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ABSTRACT 

A new simulation optimization technique that extends the pure nested partition (NP) 

algorithm is presented in this thesis. This method is called the nested partition with 

inheritance. Furthermore, a statistical selection method and a random search method are 

introduced to overcome certain shortcomings of the pure NP (Nested Partitions) algorithm. 

Finally, the suggested algorithms are applied to a data mining problems, namely data 

clustering. 

The basic idea of a NP algorithm is very simple. At each iteration, the most promising 

region is partitioned and the performance of the partitioned region is evaluated using 

sampling. Based on the performance evaluation, the most promising region is chosen for the 

next iteration. These procedures are repeated until it satisfies the termination condition. 

Even though the pure NP method guarantees the convergence to the optimal solution, 

it has two apparent problems. The first problem is related to the two sources of errors in the 

estimate of each region during the sampling phase of the NP algorithm: the sampling error 

due to the use of a limited number of sample points from the region and the estimation error 

due to the use of optimization under uncertainty. The other problem is that at each iteration, 

there is no guarantee of whether the correct move is made or not. To handle these 

shortcomings, two extensions to the pure NP are suggested. To rigorously determine the 

required sample effort, some statistical selection methods are implemented, which include the 

Nelson Matejcik procedure, the Rinott procedure, and the Dudewicz and Dalai procedure, as 
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well as a subset procedure. In addition, Genetic Algorithms (GAs) are used to speed 

convergence and to overcome the difficulty in the backtracking stage of the NP algorithm. 

The resulting algorithms are evaluated through problems with two types of noisy 

performance: a Monte Carlo simulation problem and a discrete event simulation, queuing 

problem. 

As an application of the new methodology, this work also suggests the methods to be 

applied to a data clustering problem. This is a very hard problem within data mining, with 

two of the main difficulties being lack of scalability with respect to amount of data and 

problems with high dimensionality. The new algorithms are found to be effective for solving 

this problem. Random sampling enhances scalability and the iterative partitioning addresses 

the dimensionality. 
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Chapter 1 

Introduction 

Optimization under uncertainty has been found to be useful in areas such as designing 

manufacturing systems, evaluating the requirements of computer systems, determining 

policies in inventory systems, designing and operating transportation facilities, evaluating 

designs for service organizations and analyzing financial systems. Complex and large 

systems cannot be solved by simple analytical or mathematical methods. For this reason, 

using simulation is often necessary. Moreover, optimization with uncertainty has become one 

of the most widely used tools in operations research and management science, especially 

when large finite feasible region is given. 

Evaluating the performance of every feasible point using optimization under 

uncertainty is very time consuming. Even though many optimizations with uncertainty 

algorithms have been developed, there are some difficulties when applying these algorithms 

to real world problems. One of the reasons is that there is no guarantee for convergence to the 

optimal; therefore, new algorithms are needed to overcome this problem. 

Every algorithm that is discussed in this thesis is based on the Nested Partitions (NP) 

method, an optimization with uncertainty method that is guaranteed to converge to an optimal 

solution. In this thesis, mainly three works contributions are made. First, a new method that is 

called the nested partitions method with inheritance is developed and evaluated that can be 

adopted as an optimization with uncertainty method. By introducing this new concept to the 

pure NP method, it will be shown that the new method improves efficiency of the pure NP 

method. A detailed description of this new method is presented. To further improve the 



www.manaraa.com

2 

efficiency of the pure NP method, combined algorithms with the statistical selection method 

and a random search method are suggested and validated through the numerical evaluation. 

Finally, data mining, which is recently becoming a hot issue, will be discussed. Specifically, 

data clustering will be focused upon. Data clustering has numerous applications, including 

loan payment prediction and customer credit policy analysis, classification and clustering of 

customers for target marketing, as well as detection of money laundering and other financial 

crimes. By applying the suggested algorithms to the data clustering problem it is shown that 

the NP methodology perfectly fits to solve the data clustering problem. 

There are many methods for optimization under uncertainty. Deciding which method 

to use depends on the problem structure. For example, gradient estimation, stochastic 

approximation, and sample path optimization are applicable when the feasible input variables 

are continuous. On the other hand, the random search method and statistical method are 

applicable for discrete input variables. More detailed discussion of these methods is follows. 

1.1 Continuous Input Variables 

Until recently most techniques were developed for continuous input parameters. 

There are several common methods used for continuous input variables. Several of them are 

categorized as gradient-based methods. The classical stochastic optimization methods are 

based on an iterative search in the direction of time of the gradient. This was originally 

suggested by Robbins-Monro and Kiefer-Wolfowitz in the 1950s (Robinson et al., 1951). 

The Robbins-Monro algorithm is simply a root finding procedure for functions whose values 

are not known but observed with noise. The Robbins-Monro algorithm estimates the gradient 
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directly; whereas, the Kiefer-Wolfowitz algorithm uses finite differences to the derivative. In 

both cases, the primary implementation problem determines the step size. 

The most straightforward approach for the gradient estimation method is the finite 

differences method (Glynn, 1989; Andradottir, 1989). This method is simple to implement 

and generally applicable, but it has several difficulties when applied to practical problems. 

One of the big difficulties is that too much time is spent calculating the gradient. Forward 

differences and backward each requires n+1, 2n iterations for a n dimensional function. The 

other difficulty is the gradient estimates obtained using finite differences are generally biased. 

Trying to reduce bias leads to another difficulty: large variance in the estimations. There are 

several studies describing these problems (Glynn, 1989; L'Ecuyer and Perron, 1994). For 

reducing the large variance problem, methods such as CRN (Common Random Number) 

have been suggested (Glasserman and Yao, 1992). 

Unlike finite differences, Perturbation Analysis (PA) and Likelihood Ratios (LR) 

require only a single simulation run to obtain an estimate. Infinitesimal Perturbation Analysis 

(IPA) is the best know variant of PA. The basic idea of IPA is simply to take the estimator of 

the expected performance (L'Ecuyer, 1991). The basic idea of LR is that the gradient of the 

performance is expressed as an expectation with respect to the same distribution as the 

performance function itself (Glynn, 1989). However, both methods have some limitations. 

They are not always applicable and more complicated to understand and implement than 

finite differences. A drawback to using all gradient-based search techniques is that they find 

only local optima (Fu, 1994). 
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The effort to solve this problem by converting the original simulation into an 

approximate deterministic optimization problem is started by Rubinstein and Shapiro (1993). 

The sample path method involves converting the original simulation into an approximate 

deterministic optimization problem. This approach is also called the stochastic counterpart 

method that includes the random search method and statistical method. 

1.2 Random Search Method 

In this section, brief random search methods are reviewed when the feasible region is 

discrete. These methods also cannot usually guarantee a global optimal, and therefore they 

are often called heuristics methods. Three common random search methods are mentioned 

below. 

Tabu Search was originally proposed by Glover (1977) for escaping local optimal by 

using a list of prohibited solutions known as the tabu list. The commonly used diversification 

method is re-starting from the best solution obtained so far. Another drawback of the tabu 

search is unless there is a long tabu list, it may reach a previously visited solution. 

Simulated Annealing (SA), introduced by Kirkpatrick et al. (1983), is a random 

search method that is able to escape local optima using a probability function. Unlike the tabu 

search, SA does not evaluate the entire neighborhood in every iteration. Instead, it randomly 

chooses only one solution from the current neighborhood and evaluates its costs. That means 

SA tends to need more iterations to find the best solution than the tabu search method. 

Another disadvantage is that it does not have memory, and hence it may re-visit a recent 

solution. There is a combination method of tabu and SA. 
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Genetic Algorithms (GAs) were originally developed by Holland (1975). This is the 

most widely known evolutionary method, which is both powerful and broadly applicable to 

stochastic optimization. It mimics the mechanisms of natural selection and natural genetics 

where stronger individuals are more likely to survive in a competing environment. Thereby, 

the strongest individual (having the best performance) survives. Commonly used operators 

include selection, reproduction, crossover, and mutation. 

Another class of methods that can be used when the input parameters are discrete are 

the statistical selection methods. 

1.3 Statistical Selection Method 

Simulations are often performed to compare two or more system designs. The most 

popular statistical methods are ranking and selection (R&S) and multiple comparison 

procedures (MCPs), which are applicable when the input parameters are discrete and the 

number of designs to be compared is both discrete and small (say, 2 to 20). R&S are 

statistical methods developed to select the best system or a subset that contains the best 

system design from a set of competing alternatives (Goldman and Nelson, 1994). MCPs use 

pairwise comparison to derive relationships among all designs. In other words, R&S yields 

the best system while the MCPs yields information about the relationships among the 

alternative solutions. Sanchez (1997) gives an overview of R&S with samples. Wen and 

Chen (1994) present single-stage sampling procedures for different MCPs. Goldsman and 

Nelson (1994, 1998) provide comprehensive reviews of R&S and MCPs. More detailed 

discussion is found in Chapter 3. 
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Optimization method with uncertainty has been briefly surveyed. For the next chapter, 

the focus is on the NP method, a recently developed optimization with uncertainty method 

and the extended method. 

The remainder of this thesis is organized as follows: in Chapter 2, the pure NP 

method is described and the concept of inheritance is introduced to improve efficiency of the 

NP method. As another way to improve the NP method, two different methods are employed: 

statistical selection methods and random search methods. These methods are discussed in 

Chapter 3 and Chapter 4. In Chapter 3, the combined NP methods with the statistical 

selection method are suggested and numerical evaluation is also shown. In Chapter 4, Genetic 

algorithms (GAs) are combined with the methods which are introduced in Chapter 3. Also, 

numerical results are shown. In Chapter 5 and Chapter 6, data clustering is introduced as a 

specific application of new algorithms which are introduced through the whole thesis and 

finally, in Chapter 7, the conclusion and future research is proposed. 
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Chapter 2 

The Nested Partitions Method with Inheritance 

In general, the optimization problem considered here minimizes an objective function 

/:©—»/?, over the feasible region 0; that is 

min / (#) 
flee 

where © is finite and f  is unknown but can be estimated with f (d )  for each. Q G 0. 

2.1 Nested Partitions (NP) Method 

The Nested Partitions (NP) method was originally developed by Shi and Ôlafsson 

(2000a). This method solves both deterministic and stochastic finite optimization problems. 

The basic idea of this algorithm is to shift the focus from points in the feasible region to a 

sequence of the feasible region. The Nested Partitions (NP) method is mainly composed of 4 

procedures: partitioning, sampling, estimating promising index, and backtracking. In each 

iteration of the algorithm, it is assumed there is a region, i.e., a subset of 0, that is 

considered the most promising region. Then this most promising region is partitioned into M 

regions and the entire surrounding region is aggregated into one region. Therefore M+l 

disjoint subsets of the feasible region © are looked for at each iteration. Each of these M+l 

regions is sampled using some random sampling scheme, and for each region a promising 

index is calculated. These promising indices are then compared to determine which region is 

the most promising index in the next iteration. If one of the sub-regions is found to be best, 
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this sub-region becomes the most promising region. However, if the surrounding region is 

found to be the best, the algorithm backtracks and a larger region containing the current most 

promising region becomes the new most promising region. The new most promising region is 

then partitioned and sampled in a similar fashion. This process is repeated until the terminate 

criteria is satisfied. Generally, simulation is done when the maximum depth is reached. The 

singleton regions are called regions of maximum depth. Since the singleton regions cannot be 

partitioned further, they are considered regions of maximum depth. 

2.2 NP with Inheritance 

In the pure NP method, independent sampling is performed in each iteration. In other 

words, after partitioning, given most promising region by throwing away good solutions, 

information that has been learned is lost. This allows for nice convergence properties as the 

algorithm generates a Markov chain. However, the basic idea of our new algorithm is to keep 

good solutions by inheriting these solutions to the next iteration. Every algorithm that will be 

considered in this thesis focuses on the use of sampling procedures in the pure NP method. 

The idea of inheritance also focuses on the sampling procedure, especially the part of how to 

start sampling each sub-region. If there is a minimum probability correct selection (P*), the 

sample point that is currently chosen satisfies P* and every iteration will satisfy P So, by 

inheriting the current best solution to the next iteration, the probability of a correct selection 

continues to increase. Intuitively, better solutions are formed in the next iteration and the 

computation time is reduced. 

The notation used by these algorithms is summarized below. 
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Z = {a £ 0 \a is a valid region given a fixed partitioning} 

Z0 cl = {<7 £ © l<T is of maximum depth } 

<T(k)  e Z = The most promising region in the k'h iteration 

Nt (<r) e N = The number of times a e Z has been the most promising region in the first 

k'h iterations 

<j(k)  e Z0 = The maximum depth region that has most frequently been selected as the 

promising region in the first k'h iterations 

d(<r) = The depth of tre Z 

5(<r)e Z = Thesuperregion of ere Z 

d' = Maximum depth 

M a l k )  = Number  o f  par t i t ions  o f  the  (T(k)  

The first variant of the newly proposed method follows. 

Algorithm NP with Inheritance 

Step I. Initialization 

Set k= 0 and <x(fc)=0. 

Step 2. Partitioning 

If d{a(k) )  *  d ' , that is, cr(&) partition the fittest region, <J(k ) ,  into M c ( k )  

sub-regions <Tx(Jk),...,GMg tt)(k). If d(<T(k) )=d ' ,  then let Af0(t) = 1 and 
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cr x (k )  =  <J{k) .  If d(G(k) )*0, that is, <T(fc)*0, aggregate the surrounding region 

®\<s(k) into one region (*)• 

Step 3. Random Sampling 

If k = 0, then use a random sampling to obtain Nj points from each of the regions 

&j(k) ,  ,/ = +1, 

e/1, ep  ef, y=1,2 M a ( k ) +i  

Else if k  > 0, then use the sample points of INH k _ x  and fulfill the lack of N v using 

random sampling and calculate the corresponding sample performance values L(0)  

L(0/'), L{dj 2 )  Ue j N ) ,  j  = 1,2 M a a )  +1 

Step 4. Estimating the Promising Index 

For each region <ry(fc), y = 1,2 Ma{k)+\, define a promising index function, 

I(Gj), and calculate the promising index. For example, define /(CT; ) as the best 

performance value in the region 

I (,&j)= min j  =  1»2,. . . , M + 1 
9 e a, 

and estimate/(Cy) using 

I (<Tj )  = min y = 1,2, ... +1 
< = (1.2..... ft,) 

Step 5. Backtracking 

Determine the most promising region a J t  
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A A 

À e arg min /(<*;) 
y-1,2,... >Af<i(t>^i 

If more than one region is equally promising, the tie can be broken arbitrarily. If this 

index corresponds to a region that is a sub-region of <J(k), then let this sub-region be 

the most promising region of the next iteration. 

That is <r(fc + l) = <ry(fc), j<M m k )  and keeps the sample points of the promising 

index 

INH k  = [0y l ,  6y2  6^], j  =  j k  

Otherwise, if the index corresponds to the surrounding region, backtrack to the region, 

s (o( fc ) ) ,  o f  the  cur ren t  mos t  p romis ing  reg ion .  Tha t  i s ,  l e t  a(k  +1)  = s(a(k) ) .  

Step 6. Checking the Stopping Rule 

If <T(k +1) e Z0, stop and let aopl = <T(k +1), else k = k +1 and go back to Step 2. 
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Chapter 3 

Statistical Selection in NP 

As observed in Ôlafsson (1999), the pure NP method has two apparent shortcomings. 

First, there are clearly two sources of error in the estimate of each region: the sampling error 

due to the use of a sample of the points in the region, and the estimation error due to the use 

of simulation. Secondly, in each iteration, there is no guarantee concerning whether the 

correct move is made. In Ôlafsson (1999), a two-stage NP is proposed to address both of 

these concerns. By using statistical selection methods to determine a second-stage sample 

size, it is possible to assure that the correct move is made with a given probability while 

simultaneously controlling the total error, possibly by using different numbers of sample 

points in each region. 

One key idea of many statistical ranking and selection methods is that the number of 

sample points obtained for each system should be proportional to the variance of the 

performance of each system. When incorporated into the NP method, this intuitively suggests 

that since the sizes of the regions vary greatly, and, in particular, the surrounding region tends 

to be much larger than the sub-regions, then some regions can be expected to have higher 

variance and will therefore need a larger sampling size. 

To state the two-stage NP approach rigorously, let D t J  (k )  be the i* set of random 

sample points selected from the region <Tj(k)  in the k^  iteration, where i>  1 and 

j = 1,2,,...,M + 1. Let N =[£)„(<:)| denote the initial number of sample points, which is 
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assumed to be constant. In addition let 6  e LX ( k )  denote a point in this set and let 1(5) be a 

simulation estimate of the performance of this point. Then in the kA iteration, for every i, 

XAk)=Tmn  L(0 )  (1 )  
' '  SeD^ ik )  

is an estimate of the performance of the region <r;, which is referred to as the /th system 

performance for the 7* system, 1 > 1, j = 1,2,...,M +1. The two-stage ranking and selection 

procedure first obtains n0 such system estimates, and then uses that information to determine 

the total number of Nj of system estimates needed from the f1 system, which is, subregion 

crj (k). This number is selected to be sufficiently large so that the correct subregion is 

selected with probability at least P\ subject to an indifference zone of e > 0. 

3.1 Statistical Selection Methods 

Discrete-event stochastic simulation is often used to choose the best system among a 

set of proposed systems where best is defined by the maximum or minimum expected 

simulation output. Thus, considerable interests exist for Ranking and Selection (R&S) 

procedures. The fundamentals of R&S were first proposed by Bechhofer (1954). The original 

indifference zone R&S procedure proposed by Bechhofer (1954) is single-stage and assumes 

unknown means and known, common variances for all systems. But indifference zone R&S 

procedures need not be single-stage. By defining the user-specified number of observations, 

they can extend to multi-stage procedures (sequential procedures) assuming common, known 

variances. Paulson (1964) and Bechhofer et al. (1968) present such methodologies. Koeing 

and Law (1985) extend the indifference zone approach for use as a screening procedure. 
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Unlike the articles discussed, Dudewicz and Teneja (1978) present a multivariate procedure 

which does not require reduction to a univariate model. If the indifference zone procedures 

use a least-favorable configuration (LFC) to allocate additional replications, the optimal 

computing budget allocation (OCBA) (Chen et al., 1996) and Bayesian decision-theoretic 

methods (e.g., Berger, 1988; Gupta and Miescke, 1996; Chick and Inoue, 1998; Chick and 

Inoue 1999) use an average case analysis to allocate additional replications (Inoue et al., 

1999). All three procedures assume that simulation output is independent and normally 

distributed having unknown mean and variance and applicable to both two-stage and 

sequential procedures. Inoue and Chick (2000) show empirically that the two-stage procedure 

of Rinott (1978) performs competitively with sequential OCBA and Bayesian decision-

theoretic methods when the number of systems under consideration is small (k < 5). For a 

large number of systems (k > 5), or when the difference in the mean output of the best 

system and other systems varies significantly, the Rinott procedure is less effective at 

identifying the best system. Among two-stage procedures, the Bayesian decision-theoretic 

procedures have the best overall performance characteristics. 

Recently, many articles have tried to unify the fields of R&S and MCPs. Multiple 

comparisons with the best (MCB) is one of the most widely used MCPs. To apply MCB in a 

discrete-event simulation, the simulation runs must be independently seeded and the 

simulation output must be normally distributed, or averaged so that the estimators used are 

somewhat normally distributed. There are four R&S-MCB procedures having normally 

distributed data, but do not require known or equal variance: Rinott's Procedure (Procedure 

R), Dudewicz and Dalal's Procedure (Procedure DD), Clark and Yang's Procedure 
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(Procedure CY ), Nelson and Matejcik's Procedure (Procedure NM ) (Nelson Matejcik, 

1995). Procedure R and Procedure DD are performed in the same manner with the only 

difference being in the calculation of the sample means. Both algorithms require 

independence among all observations. The total sample size depends on the sample variance 

of the systems. So the larger the sample variance, the more replications are required. Unlike 

these algorithms, Procedure CY and Procedure NM requires fewer total observations by 

employing the CRN. Clark and Yang (1986) use the Bonferroni inequality to account for the 

dependence induced by CRN. However, Nelson and Matejcik (1995) observed that the 

benefit gained from using Procedure CY is diminished when the number of systems to be 

compared is large. To overcome this problem, they present Procedure NM . Procedure NM 

assumes that the unknown variance-covariance matrix exhibits a structure known as 

sphericity that implies the variances of all paired differences across systems are equal, even 

though the marginal variances and covariances may be unequal. The difference between 

Procedure CY and NM is the calculation of sample variance. This sample variance affects 

the total number of sample size for second-stage sampling. Nelson and Matejcik (1995) 

reported that Procedure NM is superior to Procedure R, DD, and CY in terms of the total 

observations required to obtain the desired confidence level. The only potential drawback 

with Procedure NM 's is that the assumption of sphericity may not be satisfied. The 

following table summarizes these characteristics. 
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Table 3.1: Summary of Statistical Methods 

( Xtj : The output of the y* replication of system / ) 

Method CRN Single/Two/Sequential Stage Major Assumption 

Procedure PB 

Bechhofer (1954) 
Single 

(Indifference zone) 

i.i.d 

X,y ~ N(/ i ,&- )  
<72 : common, known 

Paulson (1964), 
Bechhofer et al. (1968) Sequential 

i.i.d i 

X q  -  N( j i ,< j - )  
<72 : common, known 

Procedure PDD 

Dudewicz and Dalai 
(1975) 

Two Xy ~  N( / j ,& 2 )  

Procedure PDD 

Dudewicz and Zaino 
(1976) 

Single 
(MCP) 

X t j  -  N{ t i , o - )  

Rinott (1978) Two 
(Indifference zone) 

X j j  ~  yV(//,<T2) 

Procedure R 
Nelson and Matejcik 

(1995) 

Two 
(MCB, Indifference zone) N(f i , (T 2 )  

Procedure DD 
Nelson and Matejcik 

(1995) 

Two 
(MCB, Indifference zone) x t j  -  yv(//,<7:) 

Procedure CY 
Nelson and Matejcik 

(1995) 
* Two 

(MCB, Indifference zone) 

X, - N(//,Z) 

H : unknown matrix 
Z : unknown variance-

covariance matrix 

Procedure NM 
Nelson and Matejcik 

(1995) 
$ Two 

(MCB, Indifference zone) 

xt ~ JV(//,Z) 

H : unknown matrix 
Z : unknown variance-

covariance matrix 

Procedure OCBA 
Chen etal. (1999) 

Two/Sequential 
(Optimal computing budget 

allocation (OCBA)) 
xti ;v(/z,<72) 

Procedure 0 —1(B) 
Chick and Inoue 

(2000) 

Two/Sequential 
(Bayesian decision-theoretic 

methods) 
X,/~ N^a 1 )  
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Three different methods are used to identify the best systems in terms of sample 

characteristics. Two of these methods have an assumption of independence of between 

systems. Generally, independence requires many sampled points. As a result, Nelson and 

Matejcik (1995) suggest using Common Random Numbers (CRNs) for a small number of 

alternatives. 

3.2 Independent Sampling 

3.2.1 Two-Stage Sampling with Subset Selection 

When using statistical selection methods, computation can be made more efficient by 

filtering inferior systems. A subset selection technique is used for filtering systems. The 

subset selection technique has been studied by many researchers. In 1965, Gupta proposed a 

single-stage procedure with the assumption that alternatives are independent equal-sized and 

normally distributed with the common unknown variance. This procedure produces random 

size subsets having an optimal system with pre-specified probability P* (Rinott, 1978) 

without an indifference zone. In 1989, Sullivan and Wilson proposed a general restricted 

subset selection procedure that allows unknown and unequal variance with an indifference 

zone having an exact size to be included in a subset. Unlike Gupta's method, the number of 

systems in the subset can be controlled. In 1993, Gupta and Santer extended the above 

methods for pre-specifying the maximum size of a subset and showed relationship between 

indifference zone approaches. It is efficient if the size of a subset is clearly upper-bounding 

than having the exact size of the subset method. Because exact size of subset method was 

used, then some inferior system which is already known could be included. The shortcoming 
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of the subset selection approach is that the best system cannot be found. As an illustration of 

the two-stage NP approach, Ôlafsson (1999) uses the classic Rinott's ranking and selection 

procedure. An indifference zone e is assumed to be given that describes our tolerance for 

selecting a system that has up to e units worse performance than the optimal performance. 

By using e, the number of systems being compared, and the desired probability P'of correct 

selection, a constant h is calculated. Then n0 initial samples are obtained from each system. 

After calculating sample variance Sj for each system, the second stage sample size for each 

system is calculated according the following formula. 

\ h 2 S  
Nj = max ZÎQ +1, 

J 

^2 (2) 
€ 

After finishing second stage sampling, a system with performance within e of the optimal 

performance is selected with probability P' (Rinott, 1978). 

Another incorporation method with NP is Procedure PDD. Procedure PDD is originally 

proposed by Dudewicz and Dalai (1975). This method assumes normality and independence 

of observations. Procedure PDD is almost the same as Rinott's Procedure but the difference is 

the selection of the best system is based on weighted averages. They use the weighted 

average of each stage to find the best system. Weights are calculated according the following 

formula. 

w » i k ) m i r  
i+ , _ a  

nn V 

(AT;  - n 0 )£ 2  

A^(t) JJ 

(3) 
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Wy2(*)=l-W,.,(*). 

The shortcomings of the Rinott procedure are well documented. Most notably, the 

derivations of equation (2) assumes the least favorable configuration among the system, 

which typically leads to a very conservative value for the number of sample points which 

tends to require too much sampling effort. Also, equation (2) only uses the variance, such that 

there is no consideration for the mean performance in the first stage. Thus, it may be 

beneficial in terms of computation time to filter out such inferior systems, which can be 

accomplished by combining it with a subset selection procedure, resulting in the following 

algorithm: 

Algorithm NP/Subset/Rinott 

Step 1. Initialization 

Set k =0 and c(k)=Q. 

Specify the overall desired probability P' of correct selection and indifference zone 

e, the common initial sample size n0 >2, the number of sub-regions M. Determine t 

from the f -distribution and h for Rinott's integral, t and h are constants which are 

determined by n0, the minimum probability P* of correct selection, and M (See the 

tables in Bechhofer et al., 1995). 

a — 

Step 2. Partitioning 
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Given the current most promising region f f ( k ) ,  partition o(k )  into M sub-regions 

CT,(k) CTm (k), and aggregate the surrounding region ®\a(k) into one region 

&M+1 (^-)-

Step 3. First-Stage Sampling 

Step 3-1. Let z = 1. 

Step 3-2. Use uniform sampling to obtain a set D^ik) of N sampling points 

from region y = 1,2,... ,M +1. 

Step 3-3. Use discrete event simulation of the system to obtain a sample 

performance L(0) for every 6eDf> (fc) and estimate the performance 

of the region as 

XAk)  =  min L(6). 
' »€ 0„U) 

Step 3-4. If i = nQ continue to Step 4. Otherwise, let / = i +1 and go back to 

Step 3-2. 

Step 4. Estimating Mean and Variance of First-Stage Sampling 

Calculate first-stage sample means and variances 

and 

5[x„(t)-x"'(i)]2  

2 __£=!_ s  f  =  
1 "o~ I 

for y=1,2,... ,M + 1. 
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Step 5. Filtering 

Calculate the quantity 

W;i = t 
r s ;+s )  

nn 

for all i* y. 

Include the i* region in the selected subset I if 

Y i  <  T j + i W i j -  e )+ for all i * j. 

Step 6. Computing Total Sample Size 

If I contains only a single region, I = (&)}, then this has the best promising 
j 

index so update G(k  +  l )=a„(k )  and go to Step 11. Otherwise, compute the total 

sample size for all ye I 

Nj = max n0+l, 
h 2 S-

where e is the indifference zone and h is a constant determined by n0 and the 

minimum probability P* of correct selection. 

Step 7. Second-Stage Sampling 

Obtain Nj (k )—n 0  more simulation estimates of the system performance for all ye / 

as in Step 3-1 through Step 3-4 above. 

Step 8. Estimating Mean of Second-Stage Sampling 

Let the overall sample mean be the promising index for all ye / , 
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Afy(fc) 

Step 9. Estimating Promising Index 

Select the index of the region with the best promising index, 

A A 

jk € arg min/(<jy) for all ye / . 

If more than one region is equally promising, the tie can be broken arbitrarily. If this 

index corresponds to a region that is a sub-region, a(k), then let this be the most 

promising region in the next iterations. Otherwise, if the index corresponds to the 

surrounding region, backtrack to a larger region containing the current most 

promising region. That is, let 

<J(k  +1 )  — <7. (fc), if Û <  M + 1  
it 

s(<T(k)), otherwise 

Step 10. Checking Stopping Rule 

If <T(Jk +1) 6 L0, stop and let <7op, = a(k +1), else k  =  k  +1 and go back to Step 2. 

Algorithm NP/Subset/DD 

Step 1. Initialization 

See Step 1 in Algorithm NP/Subset/Rinott. 

Step 2. Partitioning 

See Step 2 in Algorithm NP/Subset/Rinott 

Step 3. First-Stage Sampling 
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See Step 3 in Algorithm NP/Subset/Rinott 

Step 4. Estimating Mean and Variance of First-Stage Sampling 

See Step 4 in Algorithm NP/Subset/Rinott 

Step 5. Filtering Subset 

See Step 5 in Algorithm NP/Subset/Rinott 

Step 6. Computing Total Sample Size for Second-Stage Sampling 

See Step 6 in Algorithm NP/Subset/Rinott 

Step 7. Second-Stage Sampling 

See Step 7 in Algorithm NP/Subset/Rinott 

Step 8. Estimating Mean of Second-Stage Sampling 

Calculate the second-stage sample means based on Afy - n0 replications 

*?<*> = 1 

N j "o '=• 2Xm 

Step 9. Calculating Weights for each Stage Samples 

1 + 
nn 

2\\ (N j  - n 0 ) e  

h 2 S>(k )  JJ  

1 /2  

,w j 2 ( k )= l -w n ( k )  

Step 10.Calculating Weighted Averages 

Calculate weighted averages for all ye / 

Xj (k )=W j l X° i \ k )  +W j 2 X?{k ) .  

and let these weighted averages be the promising index for all ye/, 

= %;(&) 
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Step 11 .Estimating Promising Index 

See Step 9 in Algorithm NP/Subset/Rinott 

Step 12. Checking Stopping Rule 

See Step 10 in Algorithm NP/Subset/Rinott 

3.2.2 Numerical Evaluation 

To numerically evaluate the performance of Algorithm NP/Subset/Rinott and 

NP/Subset/DD, consider a production system with a given number of M workstations 

configured in parallel and jobs that are to be processed by exactly one of the stations. The 

objective is to find the optimal resource allocation that minimizes the expected makespan 

having assumption that there are some R resources that can be assigned to perform the 

necessary work within each station, and those resources can be moved to other workstations 

upon completion of a job. This is a Monte Carlo simulation where the randomness derives 

from random processing times, subsequently referred in this thesis as the Monte Carlo 

problem. 

For in all parameters of these experiments. Let M = 2, R = 5, and the first stage 

sample points in each region set to n0 = 20. Twenty replications are used for each 

experiment which were performed with P* e [0.55,0.95]. 

One of the primary benefits of two-stage sampling is that more computational effort is 

allocated in regions where it is needed. To insure that the two-stage approach indeed makes a 

substantial difference, the total number of sample points is used at each depth level. The 

results are shown in Figure 3.1. and Figure 3.2. These figures show that the computational 
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effort decreases as the depth increases, although there is a peak at depth two because this is 

the first depth where a surrounding region is considered. Intuitively the reason for this may be 

that, as the depth increases, the subrogions become more and more homogeneous leading to 

lower variance, and hence less effort is required to evaluate each region. The opposite is true 

for the surrounding region, but for Algorithms NP/Subset/Rinott and NP/Subset/DD, it may 

often be possible to filter this region out early, especially when substantial progress has been 

made and the quality of the subregion is high. 

The potential benefit of two-stage methods without subset selection is illustrated in 

both figures. When the pure NP method is used, the number of sample points is constant. The 

first plot of Figure 3.1 shows that over 3,000 sample points are needed to guarantee 95% 

success probability at depth two. Contrast with this, what is needed using the two-stage 

sampling at depth six is only 2,000 samples. Thus, variable sampling reduces total 

computational effort by one-third. In addition, the subset selection creates an even greater 

savings, and for many settings of P" the effort that would be required for NP without two-

stage sampling is three times that of which would be required for the NP/Subset/Rinott 

Algorithm. 

A comparison of the two graphs in Figure 3.1 show that the NP/Subset/Rinott 

Algorithm requires fewer sample points. In particular, if the P* is low, the total number of 

sample points for the NP/Subset/Rinott Algorithm is less than half of that used by the 

NP/Rinott Algorithm; however, the relative difference between these algorithms is decreased 

by increasing P . Similar results are seen from the NP/Subset/DD Algorithm. In conclusion, 
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at least for this problem the NP/Subset/Rinott Algorithm is less computationally expensive 

than the NP/Rinott Algorithm and these benefits are higher when P' is set to a low value. 

3500 

P* = 0.55 

P* = 0.60 

P* = 0.65 

P- = 0.70 

P* = 0.75 

P* = 0.80 

P* = 0.85 

P* = 0.90 

P* = 0.95 

3500 

•P"=0.55 ! 

- P"=0.60 

•P*=0.65 

•P*=0.70 | 

•P*=0.75 | 

-P*=0.80 | 

-P"=0.85 j 

-P"=0.90 | 

•P*=0.95 I 

Figure 3.1: Total Number of Sample Points of Each Depth for NP/Rinott (above) and 

NP/Subset/Rinott (below) 
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3500 

• P* = 0.55 

- P* = 0.60 

•P' = 0.65 

-P* = 0.70 

• P* = 0.75 

-P* = 0.80 

- P* = 0.85 j 

- P* = 0.90 j 

-P* =0.95! 

3500 

-P*=0.55 ! 

-P*=0.60 i 

-P*=0.65 

-P*=0.70 

-P*=0.75 

-P*=0.80 

-P"=0.85 

-P*=0.90 

-P"=0.95 

Figure 3.2: Total Number of Sample Points of Each Depth for NP/DD (above) and 

NP/Subset/DD (below) 
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500 
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- NP/Subset/Rinott NP/Rinott 

6/1 
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X 

4 
Depth 

-NP/Subset/DD —«—NP/DD I 

a. 300 
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Figure 3.3: Computation effort in the Surrounding Region for NP/subset/Rinott and 

NP/Rinott (above) and NP/DD and NP/Subset/DD (below) 
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The main benefit of subset selection is the improvement of the computational 

efficiency by eliminating inferior systems in the first stage. This to be particularly effective as 

the depth increases such that the surrounding region becomes larger, thus usually increasing 

the variance, which in turn dictates more computational effort. However, if the search is 

identifies a very good region, a thorough search of the surrounding region may become 

wasted effort and it would be beneficial to filter this region out early. Figure 3.3 shows the 

results for P* = 0.90. As the depth increases, the NP/Subset/Rinott Algorithm filters out the 

surrounding region more and more frequently, resulting in lower average effort in the region. 

On the other hand, the NP/Rinott Algorithm uses more effort in the surrounding region, 

which is reasonable due to its high variance. Thus, the NP/Subset/Rinott Algorithm can 

realize substantial benefits over NP/Subset. 

3.3 Correlated Sampling 

3.3.1 Two Stage Sampling with Nelson-Matejcik 

One assumption in the statistical selection procedure used by the NP/Subset/Rinott 

Algorithm is that each system is independent, which in simulation optimization implies the 

simulation samples for comparing the regions must also be independent. However, when 

comparing simulated systems, researchers prefer to use common random numbers (CRNs), 

thus making the systems independent. Hence it is important to consider statistical selection 

methods that allow for correlated systems. One such method is proposed by Nelson and 

Matejcik (1995) which will now be incorporated into the NP framework. Given a fixed first-

stage sample size nQ, first-stage samples are randomly obtained from each region by using 
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the same stream of random numbers for each region. Using these samples, sample variance 

S of the difference of the sample means is determined, then use this to compute the final 

sample size given indifference zone e. 

N = max -J n a ,  (3) 

Note that this requires computing the constant g which depends on the initial sample size n0 

and the number of regions M that are compared (Nelson and Matejcik, 1995). Furthermore, 

note that unlike Rinott's two-stage sampling, the sample size for each system is identical in 

the second stage. 

Algorithm NP/ NM 

Step 1. Initialization 

Set k=0  and <J{k )=Q.  

Specify the constants e, a, and nQ. Let g = T^xk_l)(n^_l)Q5, an equicoordinate 

critical point of the equicorrelated multivariate central t -distribution; the constant 

can be found in Hochberg and Tamhane (1987), Appendix 3, Table 4; Bechhofer et 

al. (1995); or by using the FORTRAN program AS251 of Dunnet (1989). 

Step 2. Partitioning 

Given the current most promising region <J(k) ,  partition G(k)  into M sub-regions 

at(k) <7M(fcX and aggregate the surrounding region 0\a(fc) into one region 

& M+1 (&)" 
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Step 3. First-Stage Sampling 

Step 3-1. Let i' = l. 

Step 3-2. Use uniform sampling to obtain a set D,y(fc) of N sampling points 

from region j=1,2 M + 1 using CRN across regions. 

Step 3-3. Use discrete event simulation of the system to obtain a sample 

performance 1(8) for every 8e Di}(k) and estimate the performance 

of the region as 

XAk)=  min 1(9). 
1 0€ Dlt(k) 

Step 3-4. If i  =  n 0 ,  continue to Step 4. Otherwise, let i = i  +1 and go back to 

Step 3-1. 

Step 4. Estimating the Variance of First-Stage Sampling 

Compute the approximate sample variance of the difference of the sample means 

2s;=,£ &(X i j -X i -X~ j +X- . . ) 2  

{k  —1) (« 0  — I )  

Where /*, X,=J2 , X „/ n o  and X =221)-, *«/*"„ 

Step 5. Computing Total Sample Size 

Compute the total sample size Af ( k )  = max "0» il 

Step 6. Second-Stage Sampling 

See Step 7 in the NP/Subset/Rinott Algorithm 

Step 7. Estimating Mean of Second-Stage Sampling 
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See Step 8 in the NP/Subset/Rinott Algorithm 

Step 8. Estimating Promising Index 

See Step 9 in the NP/Subset/Rinott Algorithm 

Step 9. Checking Stopping Rule 

See Step 10 in the NP/Subset/Rinott Algorithm 

Three new algorithms for incorporating statistical selection into the NP framework has been 

described. In the next chapter, these algorithms are combined with a specific method for 

implementing the inheritance introduced in Chapter 2. 

3.3.2 Numerical Evaluation 

Since common random numbers are used in the NP/NM Algorithm, less sampling 

should be required. However, this algorithm will use the same amount of computational 

effort in each region; whereas, our numerical results from Section 3.2.2 indicate that 

substantial benefits could be obtained by using a variable sampling effort. Thus, since there 

are competing benefits to the two approaches, it is not clear which algorithm will perform 

better, the NP/NM Algorithm, the NP/Subset/DD Algorithm, or the NP/Subset/Rinott 

Algorithm; therefore it is necessary to evaluate this numerically. 

The Monte Carlo problem is previously considered in Section 3.2. In this section a 

new queuing problem with very different structured is also considered. In this problem, each 

server represents a user and each buffer slot represents a resource that is to be allocated to a 

user. Jobs arrive at this system at a rate of A. Each user is processing jobs at a rate 
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/ / , ,  i  = 1,2,..., N, and if a job is routed to a user with a full queue, the job is lost. Let £,(«,) 

be the probability of the i* server losing a job (n, is the number of buffers allocated to the Ith 

server). The goal is to allocate all K available buffer slots to the users in order to minimize 

job loss. Let >l = 10, // = 10, JV = 6, AT = 18 and n0 =10. Twenty replications are used for 

each experiment with P* e [0.55,0.95]. 

The performance of the three algorithms are compared along two dimensions: speed 

as measured by the total number of simulation runs, and quality as measured by the average 

performance of the final solution obtained. Table 3.2 shows the total number of sample 

points for the three algorithms and both problems. For both problems, notice that the NP/NM 

Algorithm requires substantially fewer sample points than the NP/Subset/Rinott and 

NP/Subset/DD. With respect to solution quality, Figure 3.4 shows the performance results for 

both problems. For the Monte Carlo problem, the NP/NM Algorithm performs better: 

however, in the queuing problem, the NP/Subset/Rinott and NP/Subset/DD Algorithms show 

better performance. Moreover, there was little difference between NP/Subset/Rinott and 

NP/Subset/DD Algorithms. Thus, which algorithm performs better depends on the problem 

structure, but these results indicate that the NP/NM Algorithm is faster and thus better if the 

simulation budget is very limited. 

Table 3.2: Increase of Sample Points for Different P' and Algorithms 

Monte Carlo Problem Queuing Problem 

P'  =0.55 P* =0.95 P'  =0.55 P'  =0.95 

NP/NM 

NP/Subset/Rinott 

NP/Subset/DD 

14000 29785 

59585 249261 

76638 302855 

6783 153865 

27623 201568 

27360 200858 



www.manaraa.com

34 

NP/S ubset/Rinott —#— NP/Subset/DD Nelson Malejcik 

3J 

3.2 

<- 3.1 

00 

3 

2.9 
0.85 0.9 0.95 0.6 0.65 0.7 0.8 

NP/Subset/Rinott —#— NP/Subset/DD —A— Nelson Matejcik ! 

« 

e 

M 

0.6 0.7 0.8 

Figure 3.4: Average Performance of Final Solution for the Monte Carlo Problem (above) and 

the Queuing problem (below) 
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3.4 Best Probability of Correct Selection 

One of the key parameters that must be carefully chosen for the two-stage NP method 

is the probability of correct selection (/>*) in each iteration. If computation time is not an 

issue, it can be set using some equation of Ôlafsson (1999) to set it according to the desired 

probability of terminating correctly. However, with limited computing budget it is of interest 

to empirically determine its best value. 

This section does that for both the Monte Carlo problem and queuing problem. Thus 

for this section, the algorithm is terminated only after a fixed number of simulation 

evaluations have been conducted. For the Monte Carlo problem, the simulation was run for 6 

different sets of simulation estimates: 20,000, 30,000, 40,000, 50,000, 65,000, or unlimited 

for the NP/NM Algorithm 9 different sets of simulation estimates: 75,000, 100,000, 125,000, 

150,000, 175,000, 200,000, 225,000, 250,000, or unlimited for the NP/Subset/Rinott 

Algorithm, and 10 different sets of simulation estimates: 100,000, 125,000, 150,000. 

175,000, 200,000, 225,000, 250,000, 275,000, 300,000, or unlimited for the NP/Subset/DD 

Algorithm. For the queuing problem, the simulation was run for 6 different sets of simulation 

estimates: 50,000, 75,000, 100,000, 125,000, 150,000, or unlimited for the NP/NM 

algorithm, 9 different sets of simulation estimates: 75,000, 100,000, 125,000, 150,000, 

175,000, 200,000, 225,000, 250,000, or unlimited for the NP/Subset/Rinott algorithm, and 10 

different sets of simulation estimates: 100,000, 125,000, 150,000, 175,000, 200,000, 225,000, 

250,000, 275,000, 300,000, or unlimited for the NP/Subset/DD Algorithm. Figure 3.5 shows 

the result of the NP/NM Algorithm. For the range of P* e (0.55,0.60,0.65,0.70), there is no 

significant difference of average performance and sample points even if the simulation 
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estimates are increased. Similar results are obtained for the NP/Subset/Rinott Algorithm, as 

illustrated by Figure 3.6. Those results show that it is possible to improve the performance 

found by increasing the P" value to the range of P' e [0.7,0.8], but with limited 

computation budgets the performance degenerates very quickly for high P" values. 

Furthermore, relatively low P* values are recommended because the amount of 

computational effort increases exponentially with P*. 
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Figure 3.5: Performance for the Monte Carlo problem using NP/Subset/Rinott Algorithm 
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Figure 3.6: Performance for the Queuing Problem using NP/NM Algorithm 
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Figure 3.7: Performance for the Monte Carlo problem using NP/Subset/DD Algorithm 
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3.5 Conclusions 

The above three methods take advantage of the statistical selection procedure, namely 

Rinott's with subset procedure, DD's with subset procedure, and Nelson Matejcik's 

procedure. The results show that the NP/NM Algorithm needs relatively less computational 

effort which is good for optimization with budget limits. When restricting computation time, 

the performance degenerates very quickly for high P* values. Also, relatively low P* values 

are advisable because the amount of computational effort increases exponentially with 

respect to P*. Using the subset selection procedure, inferior systems can be deleted in 

advance. As a results, the NP/Subset/Rinott Algorithm is preferred over the NP/Rinott 

Algorithm and the NP/Subset/DD Algorithm is preferred over the NP/DD Algorithm. It has 

been shown that which algorithm is best depends on the problem to solve. The NP/NM 

Algorithm is good for Monte Carlo problems. By using a two-stage sampling computation 

effort can be saved over pure NP. For the queuing problem, the NP/Subset/Rinott Algorithm 

and the NP/Subset/DD Algorithm give better results. And in both problems, the 

NP/Subset/Rinott Algorithm and the NP/Subset/DD Algorithm show nearly the same results. 
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In this chapter, one particular method that increases the effectiveness of the 

inheritance is presented. The potential drawbacks of the pure NP method are that it can be 

stuck in a local optimum by the uneven sampling error, and it has some difficulty in 

backtracking. In Chapter 3, the statistical selection method was used to address these 

problems. In this chapter, NP is combined with statistical selection, Genetic Algorithm (GA) 

and inheritance. 

Even though there is no guarantee of global convergence, G A is well known and 

effective for heuristic algorithms. Therefore, by applying a GA search to each sub-region, 

sample points that better represent the best performance in their region can be obtained. 

Based on these sample points, the next promising region can be more precisely determined. 

This is because GA is used for finding local optimums from whole region by finding the best 

solution of each region. As a result, a combined algorithm retains the benefits of both 

methods. GA is important in terms of the more work we put into obtaining good points, the 

more valuable it is to keep them using inheritance. In addition, by adding inheritance to this 

algorithm, the time to find optimums can be accelerated and good starting points for 

sampling in a GA procedure can be obtained. 

4.1 Genetic Algorithm 
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Genetic Algorithm (GA), which was originally developed by Holland (1975), is a 

search algorithm based on the mechanisms of natural selection and genetics. This algorithm 

states that stronger individuals are most likely to survive in a competing environment. 

GA uses strings of characters (elements) to represent solutions called chromosomes. 

And each character in such a string is a gene representing a certain choice of gene. In biology, 

genes are passed to the next generations through reproduction. The reproduction process 

converges to optimal very much like an optimization paradigm. GA uses a positive value, 

known as a fitness value to reflect the degree of "goodness" of the chromosome which 

coincides with the value of the object for the problem (Man, 1999). Recently, the G A has 

received recognition as a tool for solving optimization problems in the industrial engineering 

area. GA is the most widely known evolutionary computation method which is both powerful 

and broadly applicable to stochastic optimization. The basic premise behind GA is that better 

solutions have better gene combinations (schema). Therefore, by carrying over this good 

schema during many generations, a population containing the optimal solutions can be 

obtained. Various hybrid genetic algorithms that outperformed pure genetic algorithms have 

been proposed (Gong et al., 1997; Shi et al., 1999). Further discussion can be found in Man 

(1999). 

4.1.1 Conventional Genetic Algorithm 

GA starts by generating a test population. Based on a fitness evaluation of these 

population members, two parents are selected. After applying crossover and mutation using 
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these parents, a new generation is formed. The fitness test is then applied to this new 

generation and this evolutionary procedure is repeated as necessary. 

Step I. Initial populations 

Randomly generate an initial population 

Step 2. Fitness test 

Evaluate the fitness of population members 

Step 3. Selection 

Choose two parents from population based on the fitness test 

Step 4. Mutation and crossover 

Apply crossover and mutation to selected parents results to get the new generation 

Step 5. Fitness test 

Apply the fitness test against the new generation 

Step 6. Stopping criteria 

Check stopping criteria. If it satisfies stopping criteria, then stop. Otherwise, go to 

step 3 

4.1.2 Parent Selection 

There are several methods for selecting parents. The most common types are the 

roulette wheel, (// + A), tournament, and ranking-ordered selection. 

• Roulette wheel selection (Holland, 1975) 
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Roulette wheel is the best known selection method. The sum of the fitness measures for 

all members is first calculated and then the fitness for each member is normalized against 

of this sum. All members are put on a roulette wheel so the larger the fitness, the larger 

the space on the wheel for the member, and the larger the probability of being chosen for 

mating. 

•  (/ /  + A ) -selection (Back, 1994) 

Many researchers prefer this method when dealing with combinatorial optimization 

because it prohibits selection of duplicate chromosomes from the population. 

• Tournament selection (Goldberg et al., 1989) 

This method contains random and deterministic features. A set of chromosomes is first 

randomly chosen, then a chromosome is picked out of this set for production. 

Tournament size is the number of chromosomes in the set, which is generally 2. 

• Rank-ordered selection 

A prescribed number of parents are taken for mating from the top of a rank-ordered list 

according to its fitness value. 

4.1J Crossover and Mutation 

After parents have been chosen, they mate to produce two children. This is done by 

crossing (mixing) over the genes of one parent with the other parent's. Crossover is used to 

facilitate the mixing of good genes within a population. There are several methods for 

crossover. 

• Point crossover 
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A point is randomly chosen in the chromosomes of the parents then the left side of parent 

1 is combined with the right side of the other parent and the right side of parent 1 is 

combined with the left side of the other parent. This makes another combinations. 

• Multiple-point crossover 

Multiple points are used to make new combinations. 

• Uniform crossover 

It's analogous to flipping a coin. For example, if head comes up, a gene of parent 1 is 

given to child 1. 

Mutation is the random change of once or more of the gene value and generally occurs with a 

very small probability. Mutation is used to introduce genetic variation. 

4.2 Algorithm 

Like the development seen in Chapter 3, the main framework of Algorithm NP/GA is 

the NP method. In this method, GA procedures are incorporated into the NP method in the 

sampling step, and make the inheritance record after calculating the promising index. 

Algorithm NP/GA with Inheritance 

Step 1. Initialization 

Set k = 0 and <7(fc)=0. 

Step 2. Partitioning 

If d(<r{k))*d\  that is, partition the fittest region, a(k) ,  into M a i k )  

sub-regions <r, (k ),..., (k) .  
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If d(<T(k))=d' ,  then let M a i k )  = 1 and <x,(fc) = <r(k) .  

If d(a(k))  *  0, that is <7(ifc)*0, aggregate the surrounding region Q\a(k)  into one 

region <rM a i t >Jk) .  

Step 3. Initial Population 

If k =0 and d(<r(k))  *d ' ,  use random sampling to obtain an initial population N 

st r ings f rom each of  the regions <Tj(k) ,  j  = a i k )  +1, 

POP/ = [0jx, EJ2,... ,DJN], y = 1,2 M„(t)+i 

else use the population INH k_ x  = [d' x ,  d ' 1 , . . . ,  0 j N] ,  j  = as the initial population. 

Part of the lack should be fulfilled using uniform sampling. 

Step 4. GA Search 

Apply the GA procedure to each initial population POP/ to obtain a final population 

for each region o ,j(k) ,  j  = l,2,...,Afc(t) +1 

POP' = [0?, 0{r,... ,0'fn], / = 1,2 Mffa) +1 

Step 5. Calculating Promising Index (Overall Fitness) 

Estimate the overall fitness of the region by the performance of the fittest 

chromosome in the final population. That is, the overall fitness of each region is 

estimated by 

L>(0 ; ) = min l*{0f ) i j = 1>2,..., +1 
ie (1.2._. N t )  

Step 6. Backtracking 

Calculate the index of the region with the best overall fitness (most promising region). 



www.manaraa.com

47 

jk g arg min U<7,) 
y e (1.2 Afffcti+l I 

If more than one region is equally promising, the tie can be broken arbitrarily. If this 

index corresponds to a region that is a sub-region of <r(£), then let this sub-region be 

the most  promising region of  next  i terat ion.  That  is  le t  <T(Jk +1)  = <Tj(k) ,  j  < M a i k )  

and keep the population of this promising index 

INH k  =[6 i X ,0 p -  9 i N] ,  j  = j k  

Otherwise, if the index corresponds to the surrounding region, backtrack to the region, 

s(er(k)) ,  of  the current  most  promising region.  That  is ,  le t  cr(k  +1)  = s(er(k)) .  

Step 6. Checking Stopping Rule 

If a(k +1) e Z0, stop and let aopt = a(k +1) else let k = k +1 and go back to Step 

2. 

The next algorithm illustrates how the NP method is combined with GA and 

statistical selection. By combining GA and statistical selection in the sampling procedure of 

the NP method as well as inheriting the sample points to the next iteration, this hybrid 

algorithm should converge more quickly with better solutions. 

Algorithm NP/GA/Statistical Selection with Inheritance 

Step I. Initialization 

Set k= 0 and <r(A:)=@. 

Step 2. Partitioning 
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If d(<T{k))*dm ,  that is, <J(k)  # £o, partition the fittest region, <J(k) ,  into M a ( k )  

sub-regions <T x{k) , . . . , (TM a t (k)  

If d(tT(k))=d' ,  then let Af0(t) = 1 and <r,(&) = <r(k). 

If d(<r(k))  #0, that is o(k)*Q, aggregate the surrounding region ©\o(k) into one 

region <rH n M (k) .  

Stage I Sampling 

Step 3. i = 1 

Step 4. Initial Population 

If k =0 and d(<j(k))  *d ' ,  use random sampling to obtain an initial population N 

strings from each of the regions <x; (it), j = 1,2 Mait) +1, 

POP/ = [0j x , ef-  9? ], j  = 1,2 +1 

else use the population INH k_ t  =[0 J l ,  0 j 2  0 j N] ,  j  = j k . t  as the initial 

population. Part of the lack should be fulfilled using uniform sampling. 

Step 5. GA Search 

Apply the GA to each initial population POP/ to obtain a final population for each 

region arj(k), j = 1,2,...,Afc(4) +1 

POP• = [0/ l ,0 / 2 , . . . ,0 iN  ] ,  y = 1,2,... ,M a { k )  +1 

Step 6. Calculating Overall Fitness 
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Estimate the overall fitness of the region based upon the performance of the fittest 

chromosome in the final population. That is, the overall fitness of each region for a 

given final population is estimated by 

min )« y = 1,2, ... +1 
te (1,2 Af) 

Step 7. If i = zi0, continue to Step 8. Otherwise let i = i + 1 and go back to Step 3. 

Stage II Sampling 

Step 8. Estimating Mean and Variance of First-Stage Sampling 

Calculate the first-stage sample means and variance 

— 1 A A 
L i (k)  = —YL,(CT J ) ,  

nQ t? 

and 

I[L«7;)-I,(A:)]2 

Ç 2 _ 
S < "  n „ - l  

for j = 1,2,... ,Moik) +1 

Step 9. Computing Total Sample Size for Second-Stage Sampling 

Compute the total sample size for all j 

~h 2S*(k)  
Nj(k)  = max{/i0+l, }, 

where e is the indifference zone and A is a constant that is determined by n0 and the 

minimum probability P* of the correct selection. 

Step 10.Second-Stage Sampling 
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Obtain Nj(k)-n 0  more simulation estimates of the system performance for all j  as 

the same way of Step 3 thru Step 7 above. 

Step 11 Estimating Mean of Second-Stage Sampling 

Calculate the second-stage sample means of the chromosome 

Uvj ik) )  =Lj  (*) = -L|i(<ry), j  = 1,2,... ,M a ( k )  +1 

Step 12.Calculating Promising Index (Overall Fitness) 

Calculate the index of the region with the best overall fitness (most promising 

region). 

J\  e arg min Up ) 

If more than one region is equally promising, the tie can be broken arbitrarily. If this 

index corresponds to a region that is a sub-region of o(k), then let this sub-region be 

the most promising region of the next iteration. That is let 

<j(k +1) = CTj(k), j < Ma(k) and keep the population of this promising index 

INH k ={d j \9 J \ . . . , e J n ° ) ,  j  =  j k  

Otherwise, if the index corresponds to the surrounding region, backtrack to the 

region, s(<r(fc)), of the current most promising region. That is, let a(k +1) = s(<r(fc)). 

Step 13.Checking the Stopping Rule 

If o(k + 1) € £0, stop and let aopl = a(k +1) else k = k  +1 and go back to Step 2. 
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4.3 Numerical Evaluation 

The Monte Carlo problem considered in Chapter 3 is used to numerically evaluate the 

performance of these algorithms. In all of these experiments, parameters are set as 

M =4, R = 5, and the size of first-stage sample points in each region are set as /z0 =10. 

Twenty replications are used for each experiment with P* e [0.55,0.95]. 

4.3.1 Probability of Finding Exact Solution 

Intuitively, one would expect using the inheritance has a high probability of finding 

the exact solution. The following sets of experiments support this. Figure 4.1 indicates that 

the probability of finding the correct selection can be increased significantly with the number 

of the GA iterations used. Also, the difference between algorithms are increasing with the 

number of the GA iterations used, which means the more work we put into getting good 

point, the more valuable it is to keep them using inheritance. 
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Figure 4.1 : Probability of Finding Exact Optimal Solution 
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4.3.2 Probability of Finding Solutions Using Indifference Zone 

Section 4.3.1 showed the results without statistical selection method. In this section, 

results with statistical selection method are shown. The indifference zone is set as E = 0.5. 

Figure 4.2 shows similar results with Figure 4.1. Inheritance gives significantly better results 

than without inheritance. Also it can be seen that the P(CS) with statistical selection method 

is better than without statistical selection method whether the inheritance is hired or not. 

Let's see when the 80 G A iterations are used. When inheritance is not used the value of 

P(CS) of NP/GA is 0.25 in Figure 4.1. On the contrary, the value of P(CS) of 

NP/GA/Statistical Selection is 0.7 in Figure 4.2. When inheritance is used the value of P(CS) 

of NP/GA is 0.3 in Figure 4.1. On the contrary, the value of P(CS) of NP/GA/Statistical 

Selection is 0.75 in Figure 4.2. Also, it can be seen that the difference between with 

inheritance and without inheritance of P(CS) with statistical selection is smaller than without 

statistical selection. 
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Figure 4.2: Probability of Finding Optimal Solution with Indifference Zone 
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4.3.3 Average of Makespan 

The objective of the Monte Carlo Problem is to find the resource allocation that 

minimizes total completion time. Figure 4.3 shows the average of 60 simulations which are 

similar to previous results. By using inheritance the total completion time is reduced. This 

implies that even when an optimal solution cannot be found, inheritance still yields a better 

solution than without inheritance. 
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Figure 4.3: Average of MakeSpan 

4.4 Conclusions 

Potential drawback of the pure NP method is that it can be stuck in a local optimum 

by the uneven sampling error and has some difficulty in the backtracking. With the statistical 

selection method which is introduced in previous chapter, genetic algorithm (GA) is used to 

address these problems in this chapter. Additionally, good sample points which are obtained 

in every iteration, are carried over to the next iteration by employing inheritance concept. 
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Two algorithms are suggested in this chapter: NP/GA with Inheritance and 

NP/GA/Statistical Selection with Inheritance. There are three noticeable results. First, 

inheritance gives better results than without inheritance. Second, the statistical selection 

method gives better results than without the statistical selection method whether the 

inheritance is hired or not. Lastly, the difference in finding the probability of correct selection 

between simulations with inheritance and without inheritance using the statistical selection 

method is smaller than the simulations without the statistical selection method. 
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Today, the amount of data being collected in databases far exceeds our ability to 

reduce and analyze these data without the use of automated analysis techniques. Many 

scientific government and corporate information systems are being overwhelmed by the 

flood of data that are generated and stored routinely in large databases. As a result, a tool is 

needed to sift out the important data from these databases. Knowledge discovery in databases 

(KDD) or data mining is the field that is evolving to provide automated analysis solutions. 

This chapter mainly focuses upon clustering analysis. New algorithms for clustering are 

suggested. 

5.1 Knowledge Discovery in Databases and Data Mining 

The general goal of data mining is to extract implicit, previously unknown, hidden, 

and potentially useful information from raw data in an automatic fashion, rather than 

developing individual applications for each particular need (Deogun et al., 1997). Data 

mining techniques can be divided into five classes in terms of mathematical formulation: 

Predictive Modeling, Clustering, Dependency Modeling, Data Summarization, Change and 

Deviation Detection (Bradley et al., 1998). The goal of predictive modeling is to predict a 

specific attribute based on the other attributes in the data given in the training set. If the 

output of the predicted model is numeric or continuous, then this prediction problem can be 

viewed as a regression problem. Otherwise, it can be categorized as a classification problem. 

The concern with predictive modeling is how well has it been generalized so that it performs 
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on data not included in the training set. By using a complex estimate function, training data 

can be overfitted (Shavlik and Dietterich, 1990). Overtraining can also lead to poor 

generalization even when the complexity of the function constructed is optimal (Bos, 1996). 

Therefore, there is a trade-off situation between generalization and overfitting. 

In classification, the goal is to predict the most likely state of a categorical variable 

given the value of other variables. There are several techniques where projection methods are 

the most common approach. This method divides the attribute space into decision regions 

and associates a prediction with each (Hertz et al., 1991). Decision tree or rule-based 

classification make a piecewise constant approximation of the decision surface (Bennett, 

1992; Breiman et al., 1984). The other types of methods are metric-space based methods. 

This method defines a distance metric based on data points and predicts the class value based 

on the proximity to these data points in the training set. The best-known method is K-nearest-

neighbor method (Duda et al., 1973). Relative to the generalization or how well the estimated 

classification function performs on new data not included in the training set, there are two 

approaches with the goal of refining the generalization ability of the resulting classifier. The 

first is feature selection or computing a separating surface utilizing a minimum number of 

problem features. The second is the support vector machine (SVM) that attempts to compute 

a set separation while maximizing the margin of separation between the two subsets. 

Clustering or segmentation will group the data records into subsets where items in 

each subset are more similar to each other than items in other subsets. In this thesis, the main 

focus is on the data clustering, which is described in detail in Section 5.3. 

Dependency Modeling targets modeling that generates a joint probability density 

function of the process (or processes) that describes the data. Insight into data is often gained 
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by deriving some causal structure within the data. Models of causality can be derived based 

on the functional dependencies between fields within the data (Piatetsky-Shapiro et al., 

1991). The most well known density estimation method is the Expectation-Maximization 

(EM) algorithm (Dempster et al., 1977). The EM algorithm iteratively updates the Gaussian 

parameter and the prior density probability given the posterior density probability. EM 

algorithm converges to a local minima (Neal and Hinton, 1999). 

In some cases, data mining simply needs to extract a compact pattern that describes 

subsets of the data. Sometimes summarization of the subset or predictions relations between 

fields is all that is needed. One common method is association rule (Agrawal et al., 1994). 

Associations are rules that state certain combinations of values occur with other 

combinations of values with a certain frequency and certainty. Sometimes detecting changes 

and deviations, like in a time-series or some other ordering, is needed. In this method, the 

ordering of observations is taken into account. 

As discussed above, numerous problems in data mining and knowledge discovery can be 

formulated as an optimization problem. 

5.2 Data Clustering 

Clustering can be defined as the process of grouping data into classes or clusters so 

that objects within each cluster have a high similarity in comparison to one another, but are 

very dissimilar to objects in other clusters (Han and Kamber, 2001). Many applications of 

data clustering can be found, such as the grouping of genes and proteins that have similar 

functionality (Harris et al., 1992), grouping of spatial locations prone to earthquakes from 

seismological data (Byers, 1998), characterization of different customer groups based on 
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purchasing patterns, and characterization of documents on the World Wide Web (Boley, 

1999). Clustering analysis is the unsupervised equivalent of classification where a given 

collection of unlabeled patterns is grouped into meaningful clusters. In contrast, with 

supervised classification there is a collection of labeled patterns (Jain et al, 1988). Existing 

clustering algorithms can be classified into the following two categories: hierarchical 

clustering and non-hierarchical clustering. 

5.2.1 Hierarchical Clustering 

Hierarchical algorithms can be either agglomerative or divisive. In agglomerative 

methods, the first stage starts with the singleton clusters. The pair of clusters that optimizes 

some criterion is agglomerated at each stage corresponding to each number of clusters. These 

steps repeat until the desired number of clusters is obtained. Most agglomerative hierarchical 

algorithms primarily differ in how they update the similarity between existing clusters and 

the merged clusters (Jain and Dubse, 1988). Most hierarchical clustering algorithms use 

criteria such as the distance between clusters (single linkage, average linkage) or sum of 

squares (Fraley and Raftery, 1998) for optimization. 

In the single linkage method, each cluster is represented by all the data points in the 

cluster. The similarity between two clusters is measured by the similarity of the closest pair 

of data points belonging to different clusters. This method can find clusters of arbitrary 

shapes and different sizes; however, it is highly susceptible to noise, outliers, and artifacts. 

Unlike the other methods, each cluster can be represented by a centroid of the points and the 

similarity between clusters is measured by the centroids of these clusters. CURE (Sudipto et 

al., 1998) has been proposed to cover the drawback of both methods. CURE uses a constant 
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number of representative points to represent a cluster. Similarity between two clusters is 

measured by the similarity of the closest pair of representative points belonging to different 

clusters. 

In some agglomerative hierarchical algorithms, the similarity between two clusters is 

captured by the interconnectivity between pairs of items belonging to different clusters. 

ROCK (Sudipto et al., 1999) is an agglomerative algorithm that operates on a derived 

similarity graph, which scales the aggregate interconnectivity with respect to a user-specified 

inter-connectivity model. 

Divisive hierarchical clustering algorithms such as Minimal Spanning Tree (MST) or 

graph-partitioning algorithms that use a sparse similarity matrix can be represented by a 

sparse graph. Despite this benefit, MST-based methods are highly susceptible to noise. 

However, graph partitioning based methods are overall much more robust than the other 

method (Karypis and Kumar, 1998). 

Several hierarchical algorithms are designed to find clusters that fit some static 

models. In this case, the algorithms cannot work if the choice of parameters in the static 

model is incorrect with respect to the data set being clustered. Karypis et al. (1999) suggest 

CHAMELON that measures the similarity of two clusters based on a dynamic model. 

5.2.2 Partitional Clustering 

Partitional clustering algorithms are more iterative than hierarchical. In a partitioning 

algorithm, the number of clusters K is usually specified in advance. Partitioning clustering 

procedures typically start with the patterns partitioning the data set into a number of clusters 

and divide the patterns by increasing the number of partitions. A popular performance 
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function for measuring data clustering accuracy is the total within-cluster variance, or the 

total mean-square error (MSE). The K-means algorithm is a popular algorithm that attempts 

to find k clusters that minimizes MSE. K-means (Ball and Hall, 1964) is a centroid-based 

clustering algorithm. Centroid-based algorithms are suitable for data in metric spaces in 

which it is possible to compute a centroid of a given set of points. The K-means method can 

get trapped in local optima and is very sensitive to the choice of the initial centroid. The K-

means algorithm is sensitive to outliers since the distortion of data can be happened with an 

object of extremely large value. In K-medoid method, the medoid can be used as the most 

centrally located object in a cluster, instead of taking the mean value of the objects in a 

cluster as a reference point (Han and Kamber, 2001). 

Another iterative procedure, nearest neighbor clustering, was proposed by Lu and Fu 

(1978). It assigns each unlabeled datum to the cluster of its nearest labeled neighbor datum, 

provided the distance to that labeled neighbor is below a threshold. The process continues 

until all the data are labeled or no additional labeling occurs. Raghavan and Birchand (1979) 

applied genetic algorithm to clustering to minimize the squared error criteria function. Babu 

and Murty (1993) studied hybrid algorithm of GA and K-means. GA is only used to find 

good initial cluster centers. Al-Sultan (1995) applied the tabu search approach to the 

clustering problem. This method is also combined with the K-means algorithm for cluster 

generation (Al-Sultan et al., 1996). In Rose et al. (1993), a deterministic annealing approach 

was proposed for clustering. The use of deterministic annealing in proximity-mode clustering 

was explored in Hofmann and Buhmann (1997). In the paper by A arts and Korst (1989), they 

showed that simulated annealing is statistically guaranteed to find the global optimal 

solution. 
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5.3 Clustering using NP 

In data mining there may be millions of data objects or instances that are to be 

learned. To effectively deal with large number of instances, learning may be based on a 

randomly selected subset of instances, not on the entire database. However, by using random 

sampling, there is a risk in introducing a new bias into the learning; therefore, it is essential 

to explicitly account for the noise introduced by sampling. Most clustering algorithms cannot 

handle this and the use of sampling introduces the risk of bias. Moreover, most clustering 

algorithms work well only in a few dimensions (attributes), so better scalability with respect 

to a large number of instances and high dimensionality is required. NP is of course 

specifically designed to handle noisy performance such as the estimated performance 

resulting from using a sample of instances. In particular, backtracking allows the algorithm to 

make corrections for wrong moves due to a biased sample. Also, by fixing the attributes one 

at a time, the NP method can effectively deal with high dimensions. In this section, several 

new algorithm variants are introduced. In particular, the well-known clustering algorithms, 

K-means algorithm and genetic algorithm are incorporated into the NP framework. The 

concept of inheritance employed here has been introduced in Chapter 2. In addition, the two-

stage sampling procedure explained in Chapter 3 is incorporated here. Thus there are 6 

different algorithms that are applied to the clustering problem: NP/NM/K-means, NP/NM/K-

means with inheritance, NP/NM/Genetic, NP/NM/Genetic with inheritance, 

NP/NM/Genetic/K-means, NP/NM/Genetic/K-means with inheritance. Since these variants 

are quite similar, only details for two of the algorithms are presented. The details for the 

remaining algorithms can be found in the Appendix. As already explained in Section 5.2, 
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clustering algorithms can be simply classified into two categories: hierarchical clustering and 

partitional clustering. The clustering using NP is a partitional clustering where each cluster is 

defined by its center. This algorithm tries to solve the problem which classifies given 

instances into fixed number of clusters so as to minimize the distance between points within 

a cluster. Every algorithm repeats until the stopping criteria is met. 

The following notation will be used to describe the algorithms. 

Nc : Total number of clusters (given). 

NF : Total number of features (given). 

nk : Stopping parameter for K-means algorithm (given). 

mt : The number of values which are considered as centers at each feature 

i = (given without using inheritance). 

z'j : The center of the cluster j = 1 Nc at time t (decision variable). 

I'j : Set of indices of instances assigned to cluster y' = l,...,iVc at time t (given). 

C, : Cluster i = 1 . 

NOIN : Total number of centers to inherit next iteration. 

X =(x,,x2,...xJVf) : Instances that consists of a vector of N F measurements (given). 

The squared error criterion function is used as a performance measure. Its calculation is as 

follows. 
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/(z) =^X lx-z> *' 1 y = l,2,...,A/<r( i )+l. 
1=1 Œ/J 

Using a sample of instances, the estimate 

L(z) =^^lx-Zy I, i = l,...,JV, y = +1 
1=1 re/; 

is used instead of J(z). 

Now there is an optimization problem for finding the cluster centers that minimizes the above 

objective function. At each depth, the NP method fixes the center of each cluster one at a 

time. Figure 5.1 shows simple example of clustering using NP methodology. This is nominal 

problem with two dimensions. The total number of cluster is 2. 

Number of Clusters = 2 

Seeds 

Figure 5.1 Simple Example for Clustering using NP methodology 
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Each cluster is represented by centers. We need to find out the optimal coordinate that 

minimizes similarity. To simplify the problem, it is assumed each dimension has only two 

values. That is, x, = {1,2}, i = 1,2. Therefore, there can be three subsets using partitioning at 

the first iteration. In the first subset, Ist dimension of each cluster are set as (1,1). In the 

second subset, Ist dimension of each cluster are set as (1,2). In the third subset, Ist dimension 

of each cluster are set as (2,2). 

First Iteration 

Most promising region 

^Random Samples (uniform sampling, genetic algorithm) 

C,(l.l) CidO)  23.5 Promising Index 
C,(L2) C2(1J) 11 > 1(0,(1)) = 17.05 
C,(l.l) C2(l.l) 21.2 

After partitioning three subsets, two-stage sampling is applied. For example, for the first 

subset, every sample point of this subset has a fixed first dimension; the first cluster and the 

second cluster are fixed as 1. For the remaining dimension, centers can be randomly assigned 

from the values {1,2}. Using the sampling from each subset, a similarity value is calculated. 

Based on these values, the promising index is calculated for each subset. The most promising 
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region is the first subset because it has the smallest promising index. The partitioning of the 

second iteration starts from the first subset. Because the 2nd dimension can take 2 different 

values, three different subsets can be obtained like in the first iteration. Also, the 2nd iteration 

is the maximum depth because there are two dimensions in this problem. From the 2nd 

iteration, there is one more subset which is called the surrounding region. After sampling 

from all subsets, the most promising index is found in the second region, having the Ist 

cluster's coordinate (1,1) and the 2nd cluster's coordinate (1,2). These coordinates are 

optimal that minimize the similarity of this problem. 

Second Iteration 

s(o(2)) 

(Ci(l,«) C;(2,.)), (Ci(2,e) €2(2,')) 

^ Random Samples 

Ci(2,l) Cz(2,2) 7 
Ci(l,2) €2(2,2) 11 
€,(1,1) C2(2,l) 14 
Ci(l,l) €2(2,2) 8 

| Best Promising Index] 

Most promising region o(2) 

The following algorithms describe the combined NP method with the Nelson-Matejcik's 

procedure and the K-means algorithm. 
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Algorithm NP/NM/K-means with Inheritance 

Step 1. Initialization 

Set fc = 0 and tr(Jk)=0. Specify the value of z° ,  j  = 1,2,... ,M a { k )  

Specify the constants e,a,n k  and n0. Let g = T™ik_X)ilh_l)Q5, an equicoordinate 

critical point of the equicorrelated multivariate central t -distribution; the constant can 

be found in Hochberg and Tamhane (1987), Appendix 3, Table 4; Bechhofer et al. 

(1995); or by using the FORTRAN program AS251 of Dunnet (1989). 

Step 2. Partitioning 

If d(o{k))*d' ,  that is, <T(k)  * ̂ Q, then partition the fittest region, <J(k) ,  into 

M a ( k )  subrogions a ,(fc) < (k) .  If d(<T(k))*0,  that is, <s(k)*Q,  aggregate 

the surrounding region Q\a(k)  into one region (k) .  

Stage I Sampling 

Step 3. First-Stage Sampling 

Step 3-1. Set f = 0. 

Step 3-2. K-means Algorithm 

Step 3-2-1. h = 1. 

Step 3-2-2. Randomly Assign Instances to the Clusters 

Use random sampling to obtain N instances and assign them 

to the center of INH k_ t -[z J l ,  z j 2 , . . . ,  z j N] ,  j  = yt_, if it 

matches the current feature values of the subregion. Otherwise, 
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randomly choose the centers for each of the regions 

<Tj(k), j = aik)  +1. 

Step 3-2-3. Calculate the Squared Error Criterion Function 

Calculate squared error criterion function 

L6(0)(*))=]£2 Ix-z! '* ,  = 1 No 7 = 1,2 M a l k )+l.  
'=1 xeZ* 

If L h (<Tj(k))  < L^ieTj ik)) ,  then let X t ] (k)  = L^er^k))  

Step 3-2-4. If h  =  n k ,  continue to Step 3-3. Otherwise, let h  =  h  + 1 and 

go back to Step 3-2-2. 

Step 3-2-4. Change the Center of each Subregion 

Change the center feature values > d(&(k))  for each cluster of 

each subregion and back to Step 3-2-2. 

Step 3-3. If t  = n 0 ,  continue to Step 4. Otherwise, let u=u +1 and go back to Step 

3-2-2. 

Stage II Sampling 

Step 4. Estimating Mean and Variance of First-Stage Sampling 

Compute the approximate sample variance for the difference of the sample means 

(& — l)(*o — 1) 

Where X . ^ X J k ,  X  ,  =X2,X„/«„ and X 

Step 5. Computing the Total Sample Size for Second-Stage Sampling 

Compute the total sample size for all j 
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"q, 
' (8 s ) 2]  

"q, 
ye J 

Compute the total sample size N ( k )  = max 

for y' = l,2 Mffa} +1 

Step 6. Second-Stage Sampling 

Obtain Nik)-^ more sample estimates of the system performance for all y as 

in Step 3 above. 

Step 7. Estimating the Mean of Second-Stage Sampling 

Let the overall sample mean be the promising index for all ye /, 

/(»,(*» = x,(t) = 2=L_|d^ 
N j i k )  

Step 8. Calculating the Promising Index 

Calculate the index of the region with the smallest squared error criterion function 

(most promising region); 

A A 

jk e arg min /(oy ) for all y e / . 

If more than one region is equally promising, the tie can be broken arbitrarily. If this 

index corresponds to a region that is a subregion of <T{k), then let this subregion be 

the most promising region of the next iteration. 

That is, let <T(k +1) = <x;(k) ,  j<M a i k )  and keep the centers of this promising 

index 

/Mf t =[z y ' , z y 2 , . . . , z"] ,  y=y t .  jsom • 
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Otherwise, if the index corresponds to the surrounding region, backtrack to the 

region,  s(a(k))  of  the current  most  promising region.  That  is ,  le t  a(k + 1) =  s(a(k)) .  

Step 9. Checking the Stopping Rule 

If a (k +  1 ) 6 Ï 0 ,  stop and let aopl = cr(k +1), else k = k +1 and go back to Step 2. 

The following algorithms are the combined NP method with the Nelson-Matejcik' s 

procedure and Genetic algorithms. 

Algorithm NP/NM/Genetic with Inheritance 

Step 1. Initialization 

Set k= 0 and er(k)=@. Specify the value of z°, y = 1,2 

Specify the constants e, a, and n0. Let g = î*t
(°)

(t_1)(flo_1)05, an equicoordinate 

critical point of the equicorrelated multivariate central / -distribution; the constant can 

be found in Hochberg and Tamhane (1987), Appendix 3, Table 4; Bechhofer et al. 

(1995); or by using the FORTRAN program AS251 of Dunnet (1989). 

Step 2. Partitioning 

If d(a(k))*d' f  that is, <T(k) # partition the fittest region, cr(fc), into Ma(k) 

subrogions <Tx{k),...,(TMait {k). If d{a(k))*0, that is, a(k)*Q, aggregate the 

s u r r o u n d i n g  r e g i o n  Q \ o ( k )  i n t o  o n e  r e g i o n  < T V t  i  i  ( k ) .  

Step 3. Initial Population 
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If k = 0 and d(o{k))  #  d ' ,  use random sampling to obtain an initial center 

population of N strings from each of the regions <Tj(k), j = 1,2,...,Af aik)  +1, 

POP} = [z/1, z/2 zf], y = l,2 A/, ( t )  +1 

else use the population lNH k_ x  =[zyi, z ' 2  zyAf], j  = j k  as the initial population. 

Part of the lacks should be fulfilled using uniform sampling. 

Stage I Sampling 

Step 4. First-Stage Sampling 

Step 4-1. Set ft = 1. 

Step 4-2. GA Search 

Apply the GA to each initial population POP} individually, obtaining 

a final population for each region <rj (k), j = 1,2 A/,,*, +1 

POP} =[z£, z£2,..., zf ], 7 = 1,2 M a i k )  +1. 

Step 4-3. Calculate the Squared Error Criterion Function (Overall Fitness) 

Randomly assign instances to the best final populations to calculate the 

squared error criterion function 

4(<r,(t))=Zgz-z^l, i=l,...,AAc, 7 = 1,2, 
«=1 xe/J 

If L h (<Tj(k))  < La_,(<Ty(A:)), then let %„(&) = 4,(<%,(&)) 

Step 4-4. If ft = n„, continue to Step 5. Otherwise, let ft = ft + I and go back to 

Step 4-2. 

Stage II Sampling 
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Step 5. Estimating Mean and Variance of First-Stage Sampling 

See Step 4 in Algorithm NP/NM/K-means with Inheritance 

Step 6. Computing the Total Sample Size for Second-Stage Sampling 

See Step 5 in Algorithm NP/NM/K-means with Inheritance 

Step 7. Second-Stage Sampling 

Obtain Af j ( k ) - n Q  more sample estimates of the system performance for all j  as 

in Step 4 above. 

Step 8. Estimating the Mean of Second-Stage Sampling 

See Step 7 in Algorithm NP/NM/K-means with Inheritance 

Step 9. Calculating the Promising Index 

See Step 8 in Algorithm NP/NM/K-means with Inheritance 

Step lO.Checking Stopping Rule 

See Step 9 in Algorithm NP/NM/K-means with Inheritance 

The following algorithms are the combined NP method with the Nelson-Matejcik's 

procedure, Genetic algorithm and K-means algorithm. 

Algorithm NP/NM/K-means/Genetic with Inheritance 

Step I. Initialization 

Set k = 0 and cr(it)=0. Specify the value of z°, j  = 1,2,... ,M a l k )  

Specify the constants e,  a ,  n t ,  and nQ .  Let g = T™ x k_ i)(no_1)i0.5, equicoordinate 

critical point of the equicorrelated multivariate central t -distribution; the constant can 
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be found in Hochberg and Tamhane (1987), Appendix 3, Table 4; Bechhofer et al. 

(1995); or by using the FORTRAN program AS251 of Dunnet (1989). 

Step 2. Partitioning 

See Step 2 in Algorithm NP/NM/Genetic with Inheritance 

Step 3. Initial Population 

See Step 3 in Algorithm NP/NM/Genetic with Inheritance 

Step 4.GA Search 

Apply the GA to each initial population POP/ individually, obtaining a final 

population for each region <x; (Jfc), j = 1,2 Maik) +1 

POPi -  [z ' f  ,  z ' f  zf ], y = l,2,...,M„ ( i )+l 

Step 5. First-Stage Sampling 

Step 5-1. Set r =0. 

Step 5-2. K-means Algorithm 

See Step 3-2 in Algorithm NP/NM/K-means with Inheritance 

Step 5-3. See Step 3-3 in Algorithm NP/NM/K-means with Inheritance 

Stage II Sampling 

Step 6. Estimating the Mean and Variance of First-Stage Sampling 

See Step 4 in Algorithm NP/NM/K-means with Inheritance 

Step 7. Computing the Total Sample Size for Second-Stage Sampling 

See Step 5 in Algorithm NP/NM/K-means with Inheritance 

Step 8. Second-Stage Sampling 

See Step 6 in Algorithm NP/NM/K-means with Inheritance 
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Step 9. Estimating the Mean of Second-Stage Sampling 

See Step 7 in Algorithm NP/NM/K-means with Inheritance 

Step 10.Calculating the Promising Index 

See Step 8 in Algorithm NP/NM/K-means with Inheritance 

Step 11.Checking the Stopping Rule 

See Step 9 in Algorithm NP/NM/K-means with Inheritance 

5.4 Numerical Evaluation 

To numerically evaluate the performance of these algorithms, two different sizes 

(large and small) of cancer data are considered (Blake and Merz, 1998). The large data set 

has 9 features and 699 instances; whereas, the small data set has 9 features and 286 instances. 

In this section, by varying the number of instances, the aim is to (i) show that NP can use a 

random sample of instances without sacrificing solution quality and (ii) determine 

appropriate guidelines for how many instances are needed. Comparison results between 

different amounts of sampling and between different amounts of inheritance sample points 

are shown. Numerical design is varied three different ways. First, the number of instances 

that are considered in every replication are varied: 3, 5, 10, 30, 50, 100, 200, 350, and 699 

sample points for the large data set; 1,2,4, 12, 20,41, 82, 143, and 286 sample points for the 

small data set (0.5, 0.7, 1.5, 4.5, 7, 15, 28, 50, and 100% of data set, respectively). Second, 

the number of inherited sample points is varied: 0, 3,6, 10, and 20 sample points for the large 

data set; 0, 1,2, 4, and 8 sample points for the small data set (0, 0.5, 0.85, 1.5, and 3% of the 

size of data, respectively). Finally, the sampling method is varied by using two different 

methods: Rinott and Nelson- Matejcik. 
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In general, to determine which method is better than the other, the most 

straightforward method is using the difference in performance for both methods. If the 

difference value is greater than 0, then the later is better than the former (in the case of the 

minimization problem). The same method is used in this section for comparing different 

parameter values. However, sometimes there is an ambiguous situation with determining 

which method is better. The f-test is then used to resolve these ambiguous situations as usual. 

If the confidence interval does contain zero, it's hard to say which method is better, so the t-

test is used to determine if performance differences are significant. Following is the brief 

summary of the f-test based on the difference value. 

For i  = 1,...,5, let X i x ,X l 2be a sample of n HD observations from system i  

and Mi = Interval S = /y, -/Uj is constructed for i  # j .  The X x j  with X2 J  is paired 

to define Z j = X l j - X 2 j ,  for j = 1,2,...,zi. Then Z/s are IID random variables and 

£(Zy ) = 5, the quantity which is to be constructed for a confidence interval. Let 

n 

Z(«)= —— 
n 

and 

£[Z, -Z(n)]= 

Var(Z(n)) = 
y=I 

n(n -1) 

and form the 100(1 - a) percent interval 

Z(") 
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If the confidence interval does not contain zero, then one method is significantly better than 

the other a -level. 

The NP method is attractive for clustering because it handles noisy performance very 

well, which makes it possible to use a small sample rather than all of the instances. The 

number of instances to be considered in each sampling is very important in terms of 

computation time. If the same or better results can be obtained even if small numbers of 

instances are used, this is the most desirable result. Because of this reason, a guideline for 

choosing the number of instances is needed. In this section, this guideline is suggested based 

on the different sizes of the problems. The results are shown by varying the number of 

instances: 3,5, 10, 30, 50, 100, 200,350, and 699 sample points for the large data set; 1, 2,4, 

12, 20, 41, 82, 143, and 286 sample points for the small data set (0.5, 0.7, 1.5, 4.5, 7, 15, 28, 

50, and 100% of the data set, respectively). To clearly state the results, a /-test is used based 

on the difference of the performance measures. 

5.4.1 Nelson-Matejcik Sampling 

Figure 5.2, Figure 5.3, Table 5.1, and Table 5.2, Table 5.3, and Table 5.4 show the 

results of a large data set when Nelson-Matejcik sampling method is used. Here ft(i) is 

defined as the expected similarity value of each system and r(/) is defined as the expected 

computation time when the number of instances are i e {3, 30,200, 350,699}. 

In NP/NM/K-means algorithm with no inheritance, the difference value of 3 instances 

with 30 instances (see the confidence interval of //(3) - /v(30) in Table 5.3) included zero in 

the confidence intervals, which means it cannot be verified if the similarity value of 
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considering 3 instances is higher than 30 instances until 200 instances is reached (see the 

confidence interval of /v(3) - /v(200) in Table 5.3). Intuitively, computation time should 

decrease as fewer instances are used to calculate the performance. For example, when 

looking at the NP/NM/K-means algorithm in Table 5.1, the similarity value and computation 

time are 4,259 and 394,780 each when all instances are used and 4,208 and 101,670 each 

when 50% of instances are used. Thus, the computation time is cut almost 75% with no 

reduction in quality. However, the results show that 30 instances required the least time, not 

3 instances (see the confidence interval of r(3)-r(30) and r(200)-r(30) in Table 5.4). 

This can be explained by considering the backtracking step in the nested partitions method. 

Too small number of instances decreased the probability of correctly choosing the most 

promising region. In the nested partitions method, a backtracking step is used to correct this 

kind of error and repeated backtracks increase computation time. 

For the NP/NM/K-means with inheritance method, it should be noticed that using 350 

instances, the best similarity value is obtained and there is no difference in similarity value 

even if more than 350 instances are used (see the confidence interval of //(350) - ̂(699) in 

Table 5.3). However, 30 instances still require the smallest computation time (see the 

confidence interval of r(3) - r(30) and r(200) - r(30) in Table 5.4). 

NP/NM/Genetic algorithm results show that to get the minimum similarity value at 

least 350 instances are needed and there is no difference in the similarity value even if 350 

instances are used (see the confidence interval of //(350) - //(699) in Table 5.3). Until 200 

instances there is no difference in computation time (see the confidence interval of 

r(200) - r(30) in Table 5.4). However, above 200 instances, computation time increased 
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when inheritance is not used. When inheritance is used, less sample instances are needed 

with 200 instances, to get a minimum similarity value than without inheritance and there is 

no difference greater than 200 instances (see the confidence interval of r(200) - r(350) in 

Table 5.4). Computation time is minimal between 30 ~ 200 instances. 

NP/NM/Genetic/K-means algorithm results show that to get the minimum similarity 

value at least 200 instances are needed with no difference above 200 instances (see the 

confidence interval of r(200) - r(350) in Table 5.4). Runs using between 30-350 instances 

require the least computation time when inheritance is not used. When inheritance is used, 

there is no difference in computation time until 200 instances. However above 200 instances, 

computation time increased (see the confidence interval of r(350) - r(200) and 

r(200) - r(30) in Table 5.4). 

Table 5.1 and Table 5.2 show that the mean and the variance of accuracy, 

computation speed, and the amount of backtracking for a large data set when the Nelson-

Matejcik method is used. When using half of the instances instead of using all instances, the 

computation time and variance are decreased without changing the solution quality. Also, 

when using inheritance, better accuracy, better speed and lesser amounts of backtrackings are 

obtained compared to when not using inheritance. This is noticeable in the case of 

NP/NM/K-means algorithm. 
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Table 5.1: Effect of Using Fraction of Instance Space for the Large Data Set Without 

Inheritance when the Nelson-Matejcik Sampling Method is Used 

Algorithm Fraction Similarity Value Computation Time Backtracking 
NP/NM/K-means 100% 4259.0 46 394777 6668 0.14 0.049 

50% 4207.7 53 101666 1352 0.08 0.039 

28% 4264.7 51 43794 498 0.08 0.039 

4.5% 4363.4 41 38966 590 0.10 0.052 

0.5% 4401.1 49 44065 775 0.14 0.057 

NP/NM/Genetic 100% 4203.7 40 404534 23118 0.82 0.168 

50% 4198.7 41 152181 7237 1.14 0.187 

28% 4369.5 43 120173 5521 1.02 0.182 

4.5% 4362.2 44 129202 7907 1.24 0.243 

0.5% 4606.7 51 115850 5352 0.80 0.164 

NP/NM/Genetic/K- 100% 4444.2 39 231200 10487 0.90 0.149 
means 

50% 4418.7 37 84920 5610 0.78 0.243 

28% 4401.2 38 80074 527 1.02 0.175 

4.5% 4652.4 39 80971 4968 1.02 0.247 

0.5% 4661.6 49 63127 1185 0.16 0.060 

Table 5.2: Effect of Using Fraction of Instance Space for the Large Data Set with Inheritance 

when the Nelson-Matejcik Sampling Method is Used 

Algorithm Fraction Similarity Value Computation Time Backtracking 
NP/NM/K-means 100% 3292.1 16 373743 2692 0.00 0.00 

50% 3304.1 17 97891 631 0.00 0.00 

28% 3412.1 29 42493 179 0.00 0.00 

4.5% 3423.1 23 37898 40 0.00 0.00 

0.5% 33695 34 41804 57 0.00 0.00 

NP/NM/Genetic 100% 3388.3 17 186965 6782 0.08 0.039 

50% 3436.1 18 71249 1698 0.02 0.020 

28% 3453.4 21 58647 1699 0.10 0.059 

4.5% 3567J 23 573332 1324 0.00 0.028 

0.5% 3819.7 35 62028 1196 0.02 0.020 

NP/NM/Genetic/K- 100% 3811.9 33 101676 6001 0.08 0.039 
means 

50% 3809.3 33 32070 1160 0.14 0.057 

28% 3841.9 28 25364 891 0.08 0.039 

4.5% 4033.3 38 24791 1061 0J0 0.010 

0.5% 4394.6 44 23973 978 0J0 0.082 
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Table 5.3: Similarity Results of f-test with 95% Confidence Interval of the Large Data Set 

when the Nelson-Matejcik Sampling Method is Used 

Algorithm Inheritance S Z(n) Var(Z(n)) Confidence Interval 

NP/NM/K-means 

No 

3
 

i •6
 1
 

37.7 3256.32 [-76.9. 1523] 

NP/NM/K-means 

No 
ii&t-iiism 1363 4353.61 (3.7,268.8] 

NP/NM/K-means 

No 
/l(200)-/<(350) 57.1 5899.13 [-97.2.211.3] 

NP/NM/K-means 

No 

//(200)-/z(699) 5.8 5412.31 [-142.0.153.51 NP/NM/K-means 

Yes 

/l(3)-//(30) 146.4 1534.71 [67.7. 225.11 

NP/NM/K-means 

Yes 
Mi 30)-M200) 11.0 1318.71 [-61.9.83.9] 

NP/NM/K-means 

Yes 

[573.17M1 

NP/NM/K-means 

Yes 

//(350) —//(699) 12.0 647.78 [-39.1.63.11 

NP/NM/Genetic 

No 

//(3)-//(30) 244.5 3753.09 [121.4.367.51 

NP/NM/Genetic 

No 
M30)-//(200) -7.2 3714.45 [-129.6. 115.2] 

NP/NM/Genetic 

No 
Xi(30)-yii(35p). : l6$-6 3626.0» [423,28431 

NP/NM/Genetic 

No 

/z(350)-//(699) -5.0 2872.49 [-112.6. ÎO2.6] NP/NM/Genetic 

Yes 

A(3)-M30) 252.4 2162.61 [158.9.345.81 

NP/NM/Genetic 

Yes 
AK3m >-M2a» :: -V ' 111» ii: 99£72: (505,1773] 

NP/NM/Genetic 

Yes 
//(200)-/i(350) 17.3 1030.99 [-47.1.81.8] 

NP/NM/Genetic 

Yes 

//(200)-a(699) 65.1 819.11 [7.5. 122.51 

NP/NM/Genetic/K-
means 

No 

A(3)-//(30) 9J 3477.89 [-ÎO9.2. 127.7) 

NP/NM/Genetic/K-
means 

No 
F 4$7M3 [1243,3963] 

NP/NM/Genetic/K-
means 

No 
//(200)-//(350) -17j 2324.49 [-114.3.79.31 

NP/NM/Genetic/K-
means 

No 

//(200)-A(699) -42.9 2997.95 [-152.9.67.0] 
NP/NM/Genetic/K-

means 

Yes 

/z(3)-//(30) 361.2 2769.88 [255.4.466.9] 

NP/NM/Genetic/K-
means 

Yes 
[95.4.28731 

NP/NM/Genetic/K-
means 

Yes 
^(200)-/z(350) 3X7 1595.84 [-47 3. 112.9] 

NP/NM/Genetic/K-
means 

Yes 

/Z(200)-A<699) 30.1 2287.95 [-66.0.126.1] 
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Figure 5.2: Similarity Value of Each Algorithm with No Inheritance (Left) and Inheritance 

(Right) for the Large Data Set when the Nelson-Matejcik Sampling Method is Used 
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Table 5.4: Computation Time Results of f-test with 95% Confidence* Interval for the Large 

Data Set when the Nelson-Matejcik Sampling Method is Used 

Algorithm Inheritance S Zin) Var(Z(n)) Confidence Interval 

NP/NM/K-means 

No 

r(699) - r(350) 293112.0 44656110.50 [279685.8.306536J] 

NP/NM/K-means 

No 
f(350)-r<200) 57871.5 1821877.94 [55159.8.60583.2] 

NP/NM/K-means 

No 
r(350)-r(30) 4828.8 4287784.60 [3514.8.6142.8] 

NP/NM/K-means 

No 

i , [3I5TA704Z0t NP/NM/K-means 

Yes 

r(699)-f(350) 275852J 7916703 J7 [270199.7. 281505.0] 

NP/NM/K-means 

Yes 
r(350) - r(200) 55397.8 469235.84 [54021.6.56773.9] 

NP/NM/K-means 

Yes 
r(200)-r(30) 4595.6 30965.96 [4242-l.4949.il 

NP/NM/K-means 

Yes 

«3)-t(30) h: 3806;!. .446L07 [3771A. 404021 

NP/NM/Genetic 

No 

r(699) - r(350) 252352.8 557756722.50 [204906.5. 299799.1] 

NP/NM/Genetic 

No 
r(350) - r(200) 32007.6 95879826.60 [12335.8.51679.3] 

NP/NM/Genetic 

No 
t(20Q)-t(30) 4028Ah . 104906984.50 [•29605.8.1154821 

NP/NM/Genetic 

No 

r(200) - r(3) 4411.4 73052166.33 [-12759.6. 21582.4] NP/NM/Genetic 

Yes 

r(699) - r(350) 115716.1 42115329.06 [102678.4. 128753.71 

NP/NM/Genetic 

Yes SIM > 1410830&46 [85295,16675.0] 

NP/NM/Genetic 

Yes 
r(200)-r(30) 13145 4796274.00 [-3085.3.5714.2] 

NP/NM/Genetic 

Yes 

r(3) - r<30) 3620.3 3193699.00 [30.0.7210.51 

NP/NM/Genetic/K-
means 

No 

7 118284295.70 [124430.5. 168129.7] 

NP/NM/Genetic/K-
means 

No 
r(350)-r(200) 4846.1 53839269.07 [-9894.9. 19587.2] 

NP/NM/Genetic/K-
means 

No 
r(350)-r(30) 3949.1 57173370.00 [-11241.5. 19139.71 

NP/NM/Genetic/K-
means 

No 

r(350)-r(3) 21793.1 31479374.57 [ 10521 J. 33064.8] 
NP/NM/Genetic/K-

means 

Yes 

r(699)-r(350) 69605.9 36691463.38 [57436.7. 81775.2] 

NP/NM/Genetic/K-
means 

Yes HUB iiiSiffe [3758.0,9654.81 

NP/NM/Genetic/K-
means 

Yes 
r(200) - r(30) 572.6 1695801.00 [-2043.5.3188.7] 

NP/NM/Genetic/K-
means 

Yes 

r(200) - r(3) 1390.6 1666363.74 [-120X7.3983.91 



www.manaraa.com

83 

4S* m 43» 3M 0 M* # 100» -45* 3M K 40* • 100* 

•A.T»vv».„a, 

rAltm, 
^Tooooo. i g 
^ ^3flOOOÛ . . . • 

• jv--a| 
l  « U U S 2 < n M t t 4 C  

Replications 
l t U U a 2S U H *1 u 

Replications 

NP/NM/K-means algorithm 

43k m 45* -50* ••#• • 100* -45* m —w—to* # -too* I 

t * u :» a a il i* «i 
Replications 

NP/NM/Genetic algorithm 

•os* ' »• 45* a* —m—io* • -05* i 45* m S0* • 100* 

500000 

Sisoooo 

Replications 

NP/NM/Genetic/K-means algorithm 

Figure 5.3: Computation Time of Each Algorithm with No Inheritance (Left) and Inheritance 

(Right) for the Large Data Set when the Nelson-Matejcik Sampling Method is Used 
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Figure 5.4, Figure 5.5, Table 5.5, Table 5.6, Table 5.7, and Table 5.8 show the results 

of a small data set when Nelson-Matejcik sampling method is used. fi(i) is defined as the 

expected similarity value of each system and r(i) is defined as the expected computation 

time when the number of instances are i € {1, 12, 82, 143, 286}. 

The NP/NM/K-means algorithm results show that 143 instances give the best 

similarity value when inheritance is not used. Computation time is minimized between 

12-143 instances. When inheritance is used, fewer sample instances, 82, are needed to get a 

minimum similarity value than without inheritance. Computation time is minimized between 

82 - 143 instances are used. 

The NP/NM/Genetic algorithm results show that 143 instances give the best 

similarity value and more than 143 instances make no improvement in similarity value (see 

the confidence interval of //(143) -//(286) in Table 5.7) when inheritance is not used. 

Furthermore, there is no difference in computation time. When inheritance is used, 82 

instances gave the best similarity value and computation time (see the confidence interval of 

//(12) - //(82) in Table 5.3 and r(12) - r(82) in Table 5.8). 

The NP/NM/Genetic/K-means algorithm results show that whether the inheritance is 

used or not, 143 instances gave the best similarity value and no difference above 143 

instances (see the confidence interval of /f(143) - //(286) in Table 5.7). Also, there is no 

difference in computation time. 

Table 5.5 and Table 5.6 show the mean and the variance of accuracy, computation 

speed, and the amount of backtrackings of the small data set when Nelson-Matejcik method 

is used. The results are similar with the large data set. 



www.manaraa.com

85 

Table 5.5: Effect of Using Fraction of Instance Space for the Small Data Set without 

Inheritance when the Nelson-Matejcik Sampling Method is Used 

Algorithm Fraction Similarity Value Computation Time Backtracking 
NP/NM/K-means 100% 130X3 13 84115 3166 0.72 0.103 

50% 1276.6 15 27295 901 0.30 0.071 

28% 1322.9 12 25699 689 0.56 0.186 

4.5% 1363.1 13 27698 960 0.44 0.122 

0.5% 1430.9 12 33773 1203 0.34 0.079 

NP/NM/Genetic 100% 1317.1 12 128158 8684 2.32 0.292 

50% 1277.7 11 134849 10827 2J2 0.324 

28% 1367.6 11 116872 9181 2.06 0.331 

4-5% 1416.1 II 130608 10622 2-34 0.312 

0.5% 1452.2 12 114601 10317 1.82 0.314 

NPZNM/Gcnctic/K- 100% 1267.8 II 72739 4528 1.48 0.234 
means 

50% 1285.9 9 70752 4701 2.22 0.264 

28% 1363.0 10 70175 4589 2.16 0.316 

4.5% 1421.0 9 59104 3929 1.30 0.241 

0.5% 1516.4 13 54164 3241 1.34 0.199 

Table 5.6: Effect of Using Fraction of Instance Space for the Small Data Set with Inheritance 

when the Nelson-Matejcik Sampling Method is Used 

Algorithm Fraction Similarity Value Computation Time Backtracking 
NP/NM/K-means 100% 1128.0 16 69111 960 0.00 0.000 

50% 1114.3 16 27382 635 0.06 0.044 

28% 1102.1 12 26227 359 0.00 0.000 
4.5% 1147.7 16 29928 502 0.04 0.040 

0.5% 1385.0 18 37405 943 0.10 0.059 

NP/NM/Genetic 100% 1160.3 5 31606 753 0.04 0.028 

50% 1172.1 4 30929 594 0.00 0.000 

28% 1168.9 5 31391 748 0.04 0.028 

4J% 1187.8 7 34923 1148 0.08 0.039 

0.5% 1292.4 15 40317 1472 0.10 0.052 

NP/NM/Genetic/K- 100% 1125.6 8 20025 467 0.00 0.000 
mcans 

50% 1147.1 7 21995 879 0.02 0.020 

28% 1173.0 7 20588 825 0.10 0.043 

4.5% 1243J 10 18753 598 0.10 0.043 

0.5% 1393.6 15 18571 1294 034 0.113 
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Table 5.7: Similarity Results of r-test with 95% Confidence Interval for the Small Data Set 

when the Nelson-Matejcik Sampling Method is Used 

Algorithm Inheritance S Z(n) Var(Z(n)) Confidence Interval 

NP/NM/K-means 

No 

M( l)-/i(12) 67.8 284.48 [33.9. 101.6] 

NP/NM/K-means 

No 
M12)-A(82) 40.2 376.44 [1.2.79.2) 

NP/NM/K-means 

No 
t..) ' X' / 426.05 [4.7.87.71 

NP/NM/K-means 

No 

//(143)-a<(286) -25.7 367.20 [-64.1 12.8) NP/NM/K-means 

Yes 

A(1)-/I(12) 2373 663.48 [185.5.289.01 

NP/NM/K-means 

Yes 
375.10 [3.6.813] 

NP/NM/K-means 

Yes 
A(82)-//(I43) 33.4 523.02 [-12.5. 79.31 

NP/NM/K-means 

Yes 

1 i 19.7 384.69 [-19.6.59.1] 

NP/NM/Genetic 

No 

A(D-/I(I2) 36.1 3753.09 [6.6.65.6] 

NP/NM/Genetic 

No 
//(I2)-A(82) 48.4 282.71 [14.6. 82.21 

NP/NM/Genetic 

No 
/«82)-̂ 0*3> 89» 225.68 [59.7.120.1] 

NP/NM/Genetic 

No 

M143)-A(286) -39 J 252.14 [-71.2.-7.41 NP/NM/Genetic 

Yes 

/I(1)-A(12) 104 J 237.12 [73.6. 135.41 

NP/NM/Genetic 

Yes 
Mdp-Mm 61.80 [3.1.34.7] 

NP/NM/Genetic 

Yes 
A(82)-X/(143) -3.2 44.06 [-16.5. 10.01 

NP/NM/Genetic 

Yes 

A(82)-//(286) 83 51.62 [-5.8. 23.0] 

NP/NM/Gcnetic/K-
means 

No 

MD-/K12) 74.8 31534 [39.1. 110.51 

NP/NM/Gcnetic/K-
means 

No 
AU2)-A<82) 58.0 137.10 [34.5.81.5] 

NP/NM/Gcnetic/K-
means 

No 

, 200.0* : [48.6.105.4] 

NP/NM/Gcnetic/K-
means 

No 

//(143)-/i(286) 18.1 260.58 [-143.50.5] NP/NM/Gcnetic/K-
means 

Yes 

A(1)-M12) 1503 371.94 [1113. 189.0] 

NP/NM/Gcnetic/K-
means 

Yes 
A(t2)-A(82) 70.2 163.79 [44 J. 95.91 

NP/NM/Gcnetic/K-
means 

Yes 
97.04 [6.1.45.7] 

NP/NM/Gcnetic/K-
means 

Yes 

A(143)-//(286) 213 125.03 [-0.9.44.0] 
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Figure 5.4: Similarity Value of Each Algorithm with No Inheritance (Left) and Inheritance 

(Right) for the Small Data Set when the Nelson-Matejcik Sampling Method is Used 
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Table 5.8: Computation Time Results of r-test with 95% Confidence Interval for the Small 

Size Data set when the Nelson-Matejcik Sampling Method is Used 

Algorithm Inheritance S Z(n) Var(Z(n)) Confidence Interval 

NP/NM/K-means 

No 

nnswi ftms [5002S.6,63677.9] 

NP/NM/K-means 

No 
r(l43)-r(82) 724.2 18883956.66 [-2033.2.3481.7] 

NP/NM/K-means 

No 
itl43)-r(l2) -435.1 84322438 [-2279.9. 1409.6] 

NP/NM/K-means 

No 

r(l) - r(12) 6510.2 2305501.98 [3459.8.9560.7] NP/NM/K-means 

Yes 

llSSi wmm 4 . [39713.2.43744.4] 

NP/NM/K-means 

Yes 
r(143) - r(82) 1120.8 651458.48 [-500.6. 2742.4] 

NP/NM/K-means 

Yes 
r(t2)-r(82) 2546.1 650712.63 [9253.4166.7] 

NP/NM/K-means 

Yes 

r(l)-r(12) 7477.0 1138584.00 [5333.3.9260.7] 

NP/NM/Genetic 

No 

r(286) - r(143) -6691.6 214701206.90 [-36128.8. 22745.6] 

NP/NM/Genetic 

No 
r(286) - r(82) 11285.2 149730595.50 [-13297.8.35868.2] 

NP/NM/Genetic 

No 
r(286)-r(!2) -2450.0 189676967.00 [-30118.6.25218.6] 

NP/NM/Genetic 

No 

r(286)-r(l) 13556.4 160702337.20 [-11911.4.39024.1] NP/NM/Genetic 

Yes 

r(286)-r(143) 676.5 883792.14 [-1212.1.2565.1] 

NP/NM/Genetic 

Yes 
r(286)-r(82) 215.0 1197948.19 [-1983.7. 2413.9] 

NP/NM/Genetic 

Yes 

WBi L1414S.660641 

NP/NM/Genetic 

Yes 

r(l)-r(12) 53943 3386494.00 [1697.4.90913] 

NP/NM/Genetic/K-
mcans 

No 

r(286)-r(143) 1986.9 42365775.27 [-11089.4. 15063.3] 

NP/NM/Genetic/K-
mcans 

No 
r(286) - rl82) 2564.6 38017073.37 [-9822.4. 14951.7] 

NP/NM/Genetic/K-
mcans 

No 
r(286)-r(!2) 11783.6 4147200169 [-119173. 13020.4] 

NP/NM/Genetic/K-
mcans 

No 

r(286)-r(l) 5123.0 27790075.30 [-5467.6. 15713.7] 
NP/NM/Genetic/K-

mcans 

Yes 

r(286) — r(143) -1969-3 1209276.43 [-4178.6.239.81 

NP/NM/Genetic/K-
mcans 

Yes 
r(286)-r(82) -562.7 884566.63 [-2452.2. 1326.7] 

NP/NM/Genetic/K-
mcans 

Yes 
r(286)-r(12) 1272.1 47519935 [-112.7.2657.0] 

NP/NM/Genetic/K-
mcans 

Yes 

r(286)-r(l) 1454.4 1972903.40 [-1367.4.4276.2] 



www.manaraa.com

89 

•OS» » 43» -5» # 100» -05» • 45» -50» • tOO» I 

Replications Replications 

NP/NM/K-means algorithm 

•OS» I 45» a» « 50» # too» -50» m t»» I 

NP/NM/Genetic algorithm 

•05» # 45» W» # too» -50» g IX» I 

NP/NM/Genetic/K-means algorithm 

Figure 5.5: Computation Time of Each Algorithm with No Inheritance (Left) and Inheritance 

(Right) for the Small Data Set when the Nelson-Matejcik Sampling Method is Used 
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5.4.2 Rlnott's Sampling 

Figure 5.6, Figure 5.7, Table 5.9, Table 5.10, Table 5.11, and Table 5.12 show the 

results of the large data set when Rinott's sampling method is used. As in the Nelson-

Matejcik's sampling method, fi(i) is defined as the expected similarity value for each system 

and r(i) is defined as the expected computation time when the number of instances are 

is {3,30,200,350,699}. 

In the NP/NSR/K-means algorithm with no inheritance, there is no difference in the 

similarity values. Runs using between 30 ~ 200 instances required the least computation 

time. When using inheritance, the best similarity value is found to be only 30 instances with 

no difference above 30 instances (see the confidence interval of /z(30) —//(200) in Table 

5.12). Runs using 200 instances required the least computation time (see the confidence 

interval of f (30) - f (200) in Table 5.12). 

The NP/NSR/Genetic algorithm results show that to get the minimum similarity 

value, at least 350 instances are required but the difference in similarity value cannot be 

found even if more than 350 instances are used (see the confidence interval of 

//(350) - 4/(699) in Table 5.11) when inheritance is not used. When using inheritance, fewer 

sample instances, 200, are required to get a minimum similarity value than without 

inheritance and more than 200 instances give no difference in similarity value (see the 

confidence interval of /z(200)-//(350) iiuTable 5.11). Up to 200 instances there are no 

difference in computation time (see the confidence interval of r(200) - r(30) in Table 5.12), 

but above 200 instances, computation time increased. 
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The NP/NSR/Genetic/K-means algorithm results show that to get the minimum 

similarity value, at least 200 instances are required and there is no difference in similarity 

value even if more than 200 instances are used (see the confidence interval of 

/v(200) - /v(350) in Table 5.11). Finally, there is no difference in computation time up to 

350 instances (see the confidence interval of r(699) - r(350) in Table 5.12), however more 

than 350 instances make computation time increase. 

Table 5.9 and Table 5.10 show the mean and variance of accuracy, computation speed 

and the amount of backtrackings of the large data set when Rinott's sampling method is used. 

When only half of the instances is used, the computation time and variance are decreased by 

a quarter without solution quality. Also, when using inheritance, relatively better accuracy, 

better speed, and fewer amount of backtrackings are needed than without inheritance. This is 

noticeable for the NP/NM/K-means algorithm. 

Figure 5.8, Figure 5.9, Table 5.15, and Table 5.16 show the results of a small data set 

when the Rinott's sampling method is used. As in the Nelson-Matejcik's sampling method, 

//(f) is defined as the expected similarity value of each system and r(t') is defined as the 

expected computation time when the number of instances are i € {1, 12,82,143,286}. 

The NP/NSR/K-means algorithm results show almost same results as in the Nelson-

Matejcik's sampling method. The best similarity value is obtained when 143 instances are 

used and there is no difference in similarity value even if and more than 143 instances are 

used (see the confidence interval of //(143) - /i(286) in Table 5.15) when inheritance is not 

used. Computation time is minimized between 12-143 instances. When using inheritance, 

fewer sample instances, 82 instances, are required to get a minimum similarity value than 
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Table 5.9: Effect of Using Fraction of Instance Space for the Large Data Set without 

Inheritance when the Rinott's Sampling Method is Used 

Algorithm Fraction Similarity Value Computati on Time Backtracking 
NP/NSR/K-means 100% 4327.7 44 114530 2590 0.14 0.057 

50% 4301.7 50 42178 547 0.10 0.043 

28% 4295.7 48 39490 659 0.26 0.069 

4.5% 4376.8 55 39791 647 0.18 0.062 

03% 4354.9 42 42316 213 0.02 0.020 

NP/NSR/Geneuc 100% 4196.6 49 522436 33318 1.06 0.193 

50% 4218.1 44 179204 10221 0.94 0.190 

28% 4434.9 44 114039 4661 0.68 0.147 

4.5% 4432.4 42 122786 6256 10.2 0.193 

0.5% 4667.5 31 125134 5729 1.12 0.017 

NP/NSR/Gcnctic/K- 100% 4403.3 40 108895 70004 1.06 0.245 
mcans 

50% 4481.8 34 79793 4579 0.98 0.231 

28% 4391J 40 72567 3298 0.64 0.171 

43% 4559.1 42 73423 3187 0.66 0.180 

0.5% 4661.6 53 71228 2663 0.56 0.131 

Table 5.10: Effect of Using Fraction of Instance Space for the Large Data Set with 

Inheritance when the Rinott's Sampling Method is Used 

Algorithm Fraction Similarity Value Computation Time Backtracking 
NP/NSR/K-means 100% 33393 24 190673 1439 0.00 0.000 

50% 33633 27 56990 273 0.00 0.000 
28% 3409.9 25 37091 36 0.00 0.000 
4.5% 3405.7 21 37890 41 0.00 0.000 
0-5% 3493.2 28 41712 52 0.00 0.000 

NP/NSR/Gcnctic 100% 3405.6 17 212895 10154 0.02 0.020 

50% 3418.2 20 114857 2950 0.02 0.020 

28% 3459.9 21 60296 1776 0.04 0.028 

4.5% 3542.9 20 58701 1183 0.04 0.028 

0.5% 3808.0 29 61792 1053 0.00 0.000 
NP/NSR/Genetic/K- 100% 3834.8 37 51932 2159 0.14 0.057 

means 
50% 3879.7 34 27948 938 0.16 0.059 

28% 3836.0 35 27330 999 0.10 0.051 

4_5% 3982.4 33 27199 1297 036 0.106 

03% 44253 44 25419 955 0.26 0.075 
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Table 5.11: Similarity Results of r-test with 95% Confidence Interval for the Large Data Set 

when the Rinott's Sampling Method is Used 

Algorithm Inheritance S Z(n) Var(Z(n)) Confidence Interval 

NP/NSR/K-means 

No 

M3)-a<30) -21.9 420157 [-1511.108.3] 

NP/NSR/K-means 

No 
M30)—M200) 81.1 4658.49 [-55.9. 218.2] 

NP/NSR/K-means 

No 
/i(30)-a(350) 75.1 443755 [-58.6. 209.0] 

NP/NSR/K-means 

No 

//(30)-a(699) 49.1 5487.75 [-99.7. 197.9] NP/NSR/K-means 

Yes 

IHH! 02*16241 

NP/NSR/K-means 

Yes 
-4.1 1173.94 [-719.64.6] 

NP/NSR/K-means 

Yes 
fi( 30)-x«350) 42.2 1163.15 [-26.2. 110.7] 

NP/NSR/K-means 

Yes 

M30) -M699) 66.4 1208.00 [-3.4. 136.2] 

NP/NSR/Genctic 

No 

//(3)-//(30) 235.1 3053.40 [124.1.346.1] 

NP/NSR/Genctic 

No 
//(30)-a(200) 97.5 3444.05 [-20.4. 215.4] 

NP/NSR/Genctic 

No 

r: ' W : .4 307631 [1018,325.7] 

NP/NSR/Genctic 

No 

//(350)-/<(699) 21.4 3210.72 [-92.3. 135.3] NP/NSR/Genctic 

Yes 

1
 

i 1
 

265.0 129198 [1918.337.2] 

NP/NSR/Genctic 

Yes im&Ê?: 1143,139J] 

NP/NSR/Genctic 

Yes 
/i(200)-//(350) 41.7 857.40 [-17.1. 100.51 

NP/NSR/Genctic 

Yes 

/z(200)-/z(699) 54.2 779.60 [-1.8. 110.3] 

NP/NSR/Genetic/K-
means 

No 

az(3)-/i(30) 1014 4893.82 [-38.0.243.0] 

NP/NSR/Genetic/K-
means 

No 
475933 [29.1306.4] 

NP/NSR/Genetic/K-
means 

No 
a(200)-/<(350) -50.4 3084.42 [-1610.61.1] 

NP/NSR/Genetic/K-
means 

No 

fl(200)-/<(699) -110 2792.92 [-118.1.94.1] 
NP/NSR/Genetic/K-

means 

Yes 

A(3)-A(30) 4419 2963.47 [333-5.5512] 

NP/NSR/Genetic/K-
means 

Yes alii C433.249.4] 

NP/NSR/Genetic/K-
means 

Yes 
a(200)-a(350) -43.6 2516.07 [-144.4.57.1] 

NP/NSR/Genetic/K-
means 

Yes 

a(200)-a(699) 12 2955.02 [-107.9. 110.4] 



www.manaraa.com

94 

-S» • MO» -«% m ia* 

"X F* 

«  U U C . M U M C . t t  
Replications 

NP/NSR/K-means algorithm 

Replications Replications 

NP/NSR/Genetic algorithm 

@3» » " 15 a» —— vk too» I 1—^^—03» # «â » —•»—a—iac» 

Replications Replications 

NP/NSR/Genetic/K-means algorithm 

Figure 5.6: Similarity Value of Each Algorithm with No inheritance (Left) and Inheritance 

Right) for the Large Data set when the Rinott's Sampling Method is Used 
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Table 5.12: Computation Time Results of Mest with 95% Confidence Interval for the Large 

Data Set when the Rinott's Sampling Method is Used 

Algorithm Inheritance S Z(n) Var(Z(n)) Confidence Interval 

NP/NSR/K-means 

No 

r(699)-r(350) 72351.0 7185759.00 [66965.6.77736.4] 

NP/NSR/K-means 

No 
r(350)-r(200) 2688.9 796050.37 [896.4.4481 J] 

NP/NSR/K-means 

No 
#200)-*30) -30.1 1049028.03 [-2359.3. 1755.9] 

NP/NSR/K-means 

No 

1SSSI [1394.1.4258.4] NP/NSR/K-means 

Yes 
1
 

S
 
s
 

133682.8 2289860 J0 [130642.7. 136722.8] 

NP/NSR/K-means 

Yes 
«350)-1X200) 19899.0 74702.71 [19349.9.20448.1] 

NP/NSR/K-means 

Yes 
: = j 3MS.92 [680.0,91741 

NP/NSR/K-means 

Yes 

r(3) - r(30) 3821.56.0 5468.40 [3672.9. 3970.1] 

NP/NSR/Genetic 

No 

r(699)-r(350) 343232.0 1383888532.00 [268495.417968.0] 

NP/NSR/Genetic 

No 
r(350)-r(200) 65165.0 138973863.00 [41482.1.88849.1] 

NP/NSR/Genetic 

No 

67415142.78 [•25242.4,7748.01 

NP/NSR/Genetic 

No 

r(200)-r(3) -12077.1 50620185.00 [-26370.7. 2216.4] NP/NSR/Genetic 

Yes 

r(699)-r(350) 200948.2 16835724.00 [174878.8. 227017.8] 

NP/NSR/Genetic 

Yes :#### . 52955:7 : : 12366315.40 [45890.960020.5] 

NP/NSR/Genetic 

Yes 
r(200) - r(30) 2635.1 3194934.40 [-955.7.6226.1] 

NP/NSR/Genetic 

Yes 

r(200) - r(3) -144.8 3635724.48 [-3975.5.3685.8] 

NP/NSR/Genetic/K-
mcans 

No 

[10928.9.47274.1] 

NP/NSR/Genetic/K-
mcans 

No 
r(350) - r(200) 72265 27939739.80 [3392.6. 17845.7] 

NP/NSR/Genetic/K-
mcans 

No 
«350)-«30) 6370.5 28311895J8 [-4319.1. 17060.2] 

NP/NSR/Genetic/K-
mcans 

No 

«350)-«3) 8565.5 31626919.60 [-2732.6. 19863.7] 
NP/NSR/Genetic/K-

mcans 

Yes 

•mm •irc'L" '•..'-.-r'VtiOS p:; [18958.2,28107J] 

NP/NSR/Genetic/K-
mcans 

Yes 
«350)-«200) 1068.8 1583978.80 [-1459.6.3597.2] 

NP/NSR/Genetic/K-
mcans 

Yes 
«350)-«30) 1199.7 2481275.22 [-1964.8.4364J] 

NP/NSR/Genetic/K-
mcans 

Yes 

«3)-«350) 2529.1 1605678.30 [-165.5074.8] 



www.manaraa.com

96 

•4SI 0 43» -50» • 100» 43» 0 43» -w» • tool 

«i 

t 6 U 14 » 2< 11 M 41 44 « U 14 a 24 U M 41 

Replications Replications 

NP/NSR/K-means algorithm 

«3» 0 43» m —w—M» # 100» •03» 0 43» 2M - U» M tOC» 

NP/NSR/Genetic algorithm 

-M» # tOO» I 43» 0 43» m —«- M» • 100» I 

i  » u K a » n . 3 « 4 i « c  
Replications Replications 

NP/NSR/Genetic/K-means algorithm 

Figure 5.7: Computation Time of Each Algorithm with No inheritance (Left) and Inheritance 

(Right) for the Large Data Set when the Rinott's Sampling Method is Used 
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without inheritance but there is no need to use more than 82 instances (see the confidence 

interval of /i(82) - //(143) in Table 5.15). Computation time is minimized between 82-143 

instances. 

The NP/NSR/Genetic algorithm results show that 143 instances give the best 

similarity value but more than 143 instances make no difference in similarity value (see the 

confidence interval of //(143) - //(286) in Table 5.15) when inheritance is not used. When 

inheritance is used, 82 instances give the best similarity value and there is no difference in 

similarity value more than 82 instances are used (see the confidence interval of 

//(82) - //(143) in Table 5.15). Computation time is minimized with 82 instances when 

inheritance is not used (see the confidence interval of r(286) - r(82) in Table 5.16). 

However, when using inheritance, fewer sample instances, 12 instances, are required to get a 

minimum similarity value. 

The NP/NSR/Genetic/K-means algorithm results show that whether the inheritance is 

used or not, 143 instances require the smallest similarity value but the difference in similarity 

cannot be found more than 143 instances are used (see the confidence interval of 

/i(143) - /z(286) in Table 5.15). There is no difference in computation time. 

Table 5.13 and Table 5.14 show that the mean and the variance of accuracy, 

computation speed and the amount of backtracking of the small data set when Rinott's 

sampling method is used. The results are similar with large data set. 



www.manaraa.com

99 

Table 5.13: Effect of Using Fraction of Instance Space for the Small Data Set without 

Inheritance when the Rinott's Sampling Method is Used 

Algorithm Fraction Similarity Value Computation Time Backtracking 
NP/NSR/K-means 100% 1265.2 13 27134 884 0.66 0.123 

50% 1268.0 13 24862 478 0.70 0.222 

28% 1319.9 11 24472 468 0.22 0.059 

43% 1361.4 13 25678 647 0.12 0.054 

0.5% 1450.1 12 33202 1537 0.32 0.109 

NP/NSR/Genetic 100% 1262.7 8 121930 9268 2.24 0.295 

50% 1161.0 8 23470 6429 0.00 0.219 

28% 1348.8 14 105136 8352 1.74 0.277 

4.5% 1387.5 II 179993 13807 3.86 0.403 

0.5% 1486.4 11 147007 12118 3.32 0.439 

NP/NSR/Genetic/K- 100% 1265.0 7 67901 4425 2.00 0.285 
means 

50% 1259.0 10 64803 4269 2.20 0.297 

28% 1333.2 10 77988 7366 2.30 0.355 

4.5% 1402.8 9 68307 4502 2.06 0.249 

0.5% 1486.2 13 737002 6140 2.44 0.364 

Table 5.14: Effect of Using Fraction of Instance Space for the Small Data Set with 

Inheritance when the Rinott's Sampling Method is Used 

Algorithm Fraction Similarity Value Computation Time Backtracking 
NP/NSR/K-means 100% 1093.7 12 27475 433 0.02 0.020 

50% 1106.6 13 26060 522 0.04 0.040 

28% 1124.0 13 27878 738 0.10 0.052 

4.5% 1171.1 15 29657 397 0.02 0.020 

03% 1371.9 19 36823 651 0.08 0.048 

NP/NSR/Genetic 100% 1168.8 4 31453 984 0.06 0.034 

50% 11743 4 31091 707 0.04 0.028 

28% 1166.6 5 32854 1154 0.10 0.043 

4.5% 1194.6 5 35478 1435 0.10 0.065 

0.5% 1298.7 14 40793 1331 0.12 0.055 

NP/NSR/Genetic/K- 100% 1144.2 7 19722 597 0.00 0.000 
means 

50% 1161.4 7 20931 861 0.06 0.044 

28% 1180.8 7 19167 632 0.00 0.000 

4.5% 1229.9 11 18986 729 0.10 0.043 

0.5% 1391.0 21 18130 615 0.12 0.046 
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Table 5.15: Similarity Results of Mest with 95% Confidence Interval for the Small Data Se 

when the Rinott's Sampling Method is Used 

Algorithm Inheritance S Z(fi) Var(Z(n)) Confidence Interval 

R
 

S
 

I 

1
 82,5 289.49 [48 J. 116.6] 

No 
//(l2)-//<82) 41.5 252.53 [9.6.73.4] 

No 

^0000# :v; 309.14 [16.4,87.11 

NP/NSR/K-means A(143)-A(286) 2.8 351.40 [-34.8. 40.4] 

A(1)-/I(12) 200.8 524J5 [154.8.246.8] 

Yes 
AI(12)-/I(82) ; . 47.1 22632 [16.9,773] 

Yes 
1(82)-0(143) 17.3 258.18 [-14.9.49.6] 

A(82)-A(286) 30.2 334.55 [-6.4.67.0] 

//(I)-A(I2) 98.8 218.71 [69.1. 128.6] 

No 
0(12)-0(82) 38.6 357.70 [0.6.76.7] 

No 
0(S2)-0(143) 89.4 299m [54.6,124.1] 

NP/NSR/Genetic 0(143)-0(286) -3.3 147.79 [-27.7.21.0] 

0(1)-0(12) 104.1 237.94 [73.1. 135.1] 

Yes 
' r 58.63 : [123,433] 

Yes 
0(82)-0(143) -7.6 29.43 [-18.5.3.2] 

0(82) -0(286) -2.1 33.40 [-13.7.9.4] 

0( 1)-0(12) 83.3 256.83 [51.1. 115.5] 

No 
0(12)-0(82) 69.6 164.38 [43.8.95.31 

No 
18̂ .79 [463,101.7] 

NP/NSR/Genctic/K-
0(143)-0(286) -6.0 105.71 [-26.6.14.6] 

means 
0(1)-0(12) 1612 560.15 [113.6.208.7] 

Yes 
0(12)-0(82) 49.0 163.22 [233.74.7] 

Yes in# . [0.8.38.0] 

0(143)-0(286) 17.2 96.12 [-2.5.36.8] 
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Figure 5.8: Similarity Value of Each Algorithm with No Inheritance (Left) and Inheritance 

(Right) for the Small Data Set when the Rinott Sampling Method is Used 
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Table 5.16: Computation Time Results of Mest with 95% Confidence Interval for the Small 

Size Data Set when the Rinott's Sampling Method is Used 

Algorithm Inheritance S Z(n) Var(Z(n)) Confidence Interval 

NP/NSR/K-means 

No 

1SÈ81 t [142.078,440136] 

NP/NSR/K-means 

No 
r(l43)-r(82) 389.8 464828.60 [-979.88. 1759-51 

NP/NSR/K-means 

No 
«143)-«12) -1206.2 616884.40 [-2784.1.371.71 

NP/NSR/K-means 

No 

rtn —r(12) 7794.0 3005681.98 [4311.06. 11277] NP/NSR/K-means 

Yes 

 ̂ [1703.2660521 

NP/NSR/K-means 

Yes 
r(!43)-r(82) -1817.7 845360.67 [-3664.86. 29.42] 

NP/NSR/K-means 

Yes 
r(l2)-r(82) 1779.1 719928.10 [74.5. 3483.7] 

NP/NSR/K-means 

Yes 

r(l)-r(!2) 7166.0 286124.70 [6091.41. 8240.67] 

NP/NSR/Genetic 

No 

r(286)-r(l43) 9417.6 155167148.60 [-15607.7. 34442.4] 

NP/NSR/Genetic 

No 
«286)-«82) 16793.6 161053385.00 [-8701.98.42289.2] 

NP/NSR/Genetic 

No 
"• '-sMoi'.V 332618210.10 [21423.41.94703) 

NP/NSR/Genetic 

No 

r(l)-r(12) -32986.4 280561626.90 [-66637.1.664.29] NP/NSR/Genetic 

Yes 

«286)-«143) 361.5 1387880.96 [-2005.27. 2728.27] 

NP/NSR/Genetic 

Yes 
r(286)-r(82) -1401.1 2947921.28 [-4850.5. 2048.2] 

NP/NSR/Genetic 

Yes 
- 26#1130 [1114.4,7660.2] 

NP/NSR/Genetic 

Yes 

«l)-«12) 5314.2 3743559.20 [1427.1.9201.2] 

NP/NSR/Genetic/K-
means 

No 

r(286)-r(143) 3097.5 30997419.71 [-8087.7. 14282.67] 

NP/NSR/Genetic/K-
means 

No 
«286)-«82) -10087.6 88230398.80 [-28958.4.8783.146] 

NP/NSR/Genetic/K-
means 

No 
«286)-«12) -4063 38997985.10 [-12952.3. 12139.5] 

NP/NSR/Genetic/K-
means 

No 

«286)-«I) -510.5 3592367.01 [-17142.8.6939.65] 
NP/NSR/Genetic/K-

means 

Yes 

«286)-«12) -1208.9 1074139.04 [-3291.873.24] 

NP/NSR/Genetic/K-
means 

Yes 
«286)-«I) 555.4 740201.10 [-1173.1.2283.82] 

NP/NSR/Genetic/K-
means 

Yes 
«286)-«12) 736.4 1046753.62 [-1318.9.2791.9] 

NP/NSR/Genetic/K-
means 

Yes 

«286)—«1) 1592.1 794362.10 [-198.4.3382.7] 
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Figure 5.9: Computation Time of Each Algorithm with No Inheritance (Left) and Inheritance 

(Right) for the Small Data Set when the Rinott's Sampling Method is Used 
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5.5 Conclusions 

Table 5.17 shows the results of all the cases that are described as an x-y plot. The Ac-

axis and y-axis represent the number of replication and the similarity value. The computation 

time is reduced by sampling of the instances rather than using all the instances. This is more 

noticeable in cases of large data problem. When using only half of the instances, the 

computation time is decreased without affecting solution quality. In addition, the variance is 

decreased, which means computation time is getting stable. With too few instances, the 

solution quality becomes significantly worse while the computation time goes up. When 

sampling 4.5-50% of instances, there is a trade-off between the similarity value and the 

computation time. Most of the K-means algorithm runs had concave shaped plots and needed 

relatively less computation time than the other algorithms. This is most noticeable when the 

large size data set is considered. 
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Table 5.17: Summary of all the Results (S: Similarity Value, C: Computation Time) 

K-means Genetic Genetic/ K-means 

No Inheritance Inheritance No Inheritance Inheritance No Inheritance Inheritance 

Large 

NM 

S: S: 

JO 200\ 

330 

C; 

V 

S: 

M sm 

330 

C: 

/ 

\ 
S: 

30 

C: 

u 
30 330 

\ 

Large 

NM 

300 

C: 

V 50 

S: 

JO 200\ 

330 

C; 

V 

S: 

M sm 

330 

C: 

/ 

200 

C: 

V 

S: 

30 

C: 

u 
30 330 

2ÛO 

C: 

/ 
Large 

NM 

300 

C: 

V 50 

S: 

JO 200\ 

330 

C; 

V 200 

200 

C: 

V 

S: 

30 

C: 

u 
30 330 200 

Large 

NSR 

S: 

\ 
S\ 

30 any 

330 

C: 

/ 

\ 
S: 

200 

C: 

/ 

\ 
Large 

NSR 

C: 

V 
30 

C; 

V 

S\ 

30 any 

330 

C: 

/ 

200 

C: 

/ 

S: 

200 

C: 

/ 

3*) 

C: 

/ 

Large 

NSR 

C: 

V 
30 

C; 

V 3» 200 150 *50 

Small 

NM 

\ \ \ \ \ 

S: 

\ 

Small 

NM 

143 

C: 

V 

c 

C: 

V 

143 

C: 

12 

C: 

\ 

•443 

C; 

143 

C: 

Small 

NM 

143 

C: 

V 

c 

C: 

V 12 
Small 

NSR 

\ \ \ \ \ \ 

Small 

NSR 

$43 

C: 

V 12 143 

S2 

C: 

V «2 143 

143 

C: 

12 

12 

C: 

\ 

143 

C: 
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Chapter 6 

Evaluation of New Methodology 

In Chapter 2, the new concept of inheritance in the NP method is introduced and 

evaluated using two different scale problems. In this chapter, the importance of inheritance is 

evaluated further by numerically verifying that inheritance is beneficial and suggests 

guidelines to establish the best level of inheritance. Also the different statistical selection 

methods are evaluated such as Nelson-Matejcik and Rinott's two-stage sampling, which are 

proposed in Chapter 3 to overcome certain shortcomings of the pure NP method. Lastly, 

comparison results with several algorithms such as PAM, CLARA, CLARANS are reported. 

For numerical testing, the problem addressed in Chapter 5 is used. 

6.1 Amount of Inheritance 

One parameter that can affect the quality and computation time of the algorithm is the 

amount of sample points to be inherited by the next iteration. The amount of inheritance is 

varied: 0, 3, 6, 10, and 20 sample points for the large data set; 0, 1,2, 4, and 8 sample points 

for the small data set (0, 0.5, 0.85, 1.5, and 3% of the data size, respectively). The r-test is 

used to compare different systems based on the difference of performance. Figure 6.1, Figure 

6.2, Table 6.1, and Table 6.2 show the results of the large data set when the Nelson-Matejcik 

sampling method is used. fi(i) is defined as the expected similarity value of each system and 

r(i) is defined as the expected computation time when the amounts of inheritance are 

16 {0,3,6, 10,20}. 
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For the NP/NM/K-means algorithm, numerical results show that by inheriting sample 

points to the next iterations, similarity values are decreased (see the confidence interval of 

ju(0)-/i(3) and //(3) - fi(6) in Table 6.1). However, when considering more than 10 

sample points, there is not much difference in the similarity value (see the confidence 

interval of //(6) -//(10) and //(10) - fi(20) in Table 6.1). The computation time shows that 

3 inherited sample points require the smallest computation time in both cases (see the 

confidence interval of r(0)-r(3) in Table 6.2). This reason can be explained by NP 

partitioning with inheritance and backtracking. As more sample points are inherited to the 

next iteration, it increases the subset size which thereby causes an increase in computation 

time. Between different inheritances, there could be a trade-off between the amount of 

backtracking caused by sampling bias and an increase in computation time caused by a larger 

subset. Also, the NP method can have sampling bias which can lead to an increase in 

backtracking without considering inheritance. 

As in the NP/NM/K-means algorithm, the NP/NM/Genetic algorithm, by inheriting 

sample points to the next iteration, makes the similarity value decrease; but with more than 3 

sample points, there is no difference in similarity value (see the confidence interval of 

/z(0)-/z(3) in Table 6.1). However, the pattern looks a little different compared to the 

NP/NM/K-means algorithm. In the NP/NM/K-means algorithm, the gap (difference) between 

no inheritance and inheritances (except with 3 inheritances) is not clear even if confidence 

intervals show there is a difference. In the NP/NM/Genetic algorithm, however, this gap 

looks very clear, and there is not much gap between different inheritances. This can be 

explained by a GA search and backtracking of the NP method. If the algorithm starts with 
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randomly selected parents (without using inheritance), at any iteration, the number of 

backtracking is going to be increased, thereby increasing the computation time. The reason is 

the same as with the NP/NM/K-means algorithm. The GA search makes the population form 

the best two parents that are acquired from the previous iteration within the GA search. 

Through cross-over and mutation, the quality of these populations improves. So inheriting 

the initial two best samples of parents by the next iteration avoids an increase in the amount 

of backtracking. The NP/NM/Genetic algorithm is implemented to choose parents randomly 

if more than 2 samples are inherited. If not, the top 2 inherited points are considered as 

parents for making the population. This could degrade the quality of the solution and increase 

the computation time by invoking more backtracking. 

Figure 6.3, Figure 6.4, Table 6.3, and Table 6.4 show the results of the small data set 

when the Nelson-Matejcik sampling method is used, ^i(i) is defined as the expected 

similarity value of each system and r(t) is defined as the expected computation time when 

the amount of inheritance is / e {0, 1, 2, 4, 8}. Similar results is obtained from the small 

data set from the NP/NM/K-means algorithm. Similarity values is decreased by using 

inheritance, but there is no difference in similarity value when inheriting more than 2 sample 

points (see the confidence interval of //(l)-//(2) in Table 6.3) and 1 sample point 

inheritance requires the smallest computation time (see the confidence interval of r(0) - r(l) 

in Table 6.4). 

In the NP/NM/Genetic algorithm, the similarity value is decreased but there is no 

need for more than 1 inheritance and inheriting 1 sample point requires the smallest 

computation time (see the confidence interval of r(0) - r(l) in Table 6.4). The similarity 
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Table 6.1: Similarity Results of Mest with 95% Confidence Interval for the Large Data Set 

when the Nelson-Matejcik Sampling Method is Used 

Algorithm Instances S Z(n) Var(Z(n)) Confidence Interval 

NP/NM/K-means 

3(0.5%) 

0(0)-0(3) 528.6 4682.23 [391.1.666.11 

NP/NM/K-means 

3(0.5%) 

S
 

1 1
 

204.2 3774.14 [80.8. 327.61 

NP/NM/K-means 

3(0.5%) 

KM# p '  - - [91.4.24531 

NP/NM/K-means 

3(0.5%) 

0(10)-0(20) -69.7 1875.98 [-156.7.17.2] NP/NM/K-means 

200(28%) 

0(0)-0(3) 754.9 3345.20 [638.7.871.1] 

NP/NM/K-means 

200(28%) 11* a* [42.6,171.11 

NP/NM/K-means 

200(28%) 
0(6)-0(10) 54.5 737.30 [-0.1. 109.0] 

NP/NM/K-means 

200(28%) 

1
 

I S
 

S
 

-9.2 1283.28 [-81.2.62.7] 

NP/NM/Genetic 

3(0.5%) 

0(oy-0(3) 744» 4249.89 [613.1.875.0] 

NP/NM/Genetic 

3(0.5%) 

9
 

i 1
 

38.5 1986.14 [-50.9. 128.0] 

NP/NM/Genetic 

3(0.5%) 
0(3)-0(10) 16.6 2015.94 [-73.5. 106.8] 

NP/NM/Genetic 

3(0.5%) 

0(3)-0(20) 42.9 2987.78 [-66.8. 152.7] NP/NM/Genetic 

200(28%) 

MO (̂3) ««4: ' 198331 [806.9.987.8] 

NP/NM/Genetic 

200(28%) 
0(3)-0(6) -0.1 1046.80 [-65.1.64.8] 

NP/NM/Genetic 

200(28%) 
0(3)-0(10) 21.7 718.92 [-32.1.75.6] 

NP/NM/Genetic 

200(28%) 

1
 

1
 

17.6 821.72 [-39.9. 75.2] 

NP/NM/Genetic/K-
means 

3(0.5%) 

v'.' "342*.-• 648334 [181.0.504.61 

NP/NM/Genetic/K-
means 

3(0.5%) 

s
 

i I
 

-172.8 3954.42 [-299.1.-46.4] 

NP/NM/Genetic/K-
means 

3(0.5%) 

8
 

i *
 

S
 

-22.0 5845.19 [175j. 131.5] 

NP/NM/Genetic/K-
means 

3(0.5%) 

S
 

i 1
 

-75.5 4088.27 [-204.2,52.6] 
NP/NM/Genetic/K-

means 

200(28%) 

2695.56 [448.2,656.8] 

NP/NM/Genetic/K-
means 

200(28%) 
0(3)-0(6) 64.3 2153.06 [-28.9. 157.51 

NP/NM/Genetic/K-
means 

200(28%) 

S
 

t
 1 

1
 253 1737.24 [-58.4. 109.0] 

NP/NM/Genetic/K-
means 

200(28%) 

0(3)-0(20) 6.7 1970.01 [-82.4.95.8] 
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Figure 6.1: Similarity Value of Each Algorithm when the Numbers of Instances are 3 (Left), 

and 200 (Right) of the Large Data Set when the Nelson-Matejcik Sampling Method is Used 
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Table 6.2: Computation Time Results of r-test with 95% Confidence Interval for the Large 

Data Set when the Nelson-Matejcik Sampling Method is Used 

Algorithm Instances S Z(n) Var(Z(/»)) Confidence Interval 

NP/NMZK-means 

3(05%) 

*20)-*10) 1165 5330.06 [-30.1.263.2] 

NP/NMZK-means 

3(05%) 
r(20) - r(6) 159.9 15941.31 [-93.6.413.6] 

NP/NMZK-means 

3(05%) 
r(20)-«3) 7688.8 161148.20 [6882.4.8495.4] 

NP/NMZK-means 

3(05%) 

WHÊÊM P132*H768J1 NP/NMZK-means 

200(28%) 

r(20) - r(10) 48.4 69038.00 [-4795,576.2) 

NP/NMZK-means 

200(28%) 
r(20) - r(6) 639.0 73666.00 [93.6. 1184.2] 

NP/NMZK-means 

200(28%) 
r(6) - r(3) 10724.0 330525.00 [9568.6. 11878.6] 

NP/NMZK-means 

200(28%) 

slSS®l X -126635- [11238.7,14088.41 

NP/NM/Genetic 

3(05%) 

r(20)-r(10) 14166.0 2999346.00 [10687.2. 17645.8] 

NP/NM/Genetic 

3(05%) 
r(20) - r(6) 6465.9 3403612.10 [2759.6. 10172.3] 

NP/NM/Genetic 

3(05%) 
r(6) - r(3) 4219.2 4491934.20 [-38.7.8477.1] 

NP/NM/Genetic 

3(05%) 

/J w&pêk-- ; 26044356.00 • •i •«» * - ' [68421.0,88926J] NP/NM/Genetic 

200(28%) 

r(20) - r(10) 19133.1 4203785.00 [15014.0. 23252.2] 

NP/NM/Genetic 

200(28%) 
r(IO)-r(6) 2183J 2184388JO [-785.9.5152.6] 

NP/NM/Genetic 

200(28%) 
r(10) - r(3) 7982.9 1606192.00 [5436.8. 10529.0] 

NP/NM/Genetic 

200(28%) 

MU! [77783*99521J] 

NP/NM/Genetic/K-
mcans 

3(05%) 

r(20)-r(10) 1869J 2046660.30 [-1004.8.4743.4] 

NP/NM/Genetic/K-
mcans 

3(05%) 
f(20) — r(6) 1631.0 1109214.00 [-484.9. 3746.8] 

NP/NM/Genetic/K-
mcans 

3(05%) 
r(20) - r(3) 7440.3 1039346.00 [-1185.0.3677.3] 

NP/NM/Genetic/K-
mcans 

3(05%) 

'40*03..:: :. I9S9527J0 [37588.1,43212.6] 
NP/NM/Genetic/K-

mcans 

200(28%) 

r(20)-r(10) -1882.8 2373735.00 [-4978.1.1212-3] 

NP/NM/Genetic/K-
mcans 

200(28%) 
r(20)-r(6) -9895 1440955.00 [-3401.2.1422.0] 

NP/NM/Genetic/K-
mcans 

200(28%) 
r(20) - r(3) 3812 1500706.00 [-2079.6.2842J] 

NP/NM/Genetic/K-
mcans 

200(28%) 

1*11 II* ; [47922.8.62260.7] 
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Figure 6.2: Computation Time of Each Algorithm when the Numbers of Instances are 3 

(Left), and 200 (Right) of the Large Data Set when the Neison-Matejcik Sampling Method is 

Used 
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value decreases by inheriting more sample points (see the confidence interval of //(0) - //(I) 

in Table 6.1) but there is no need for more than 1 sample point. Moreover, 1 sample point 

inheritance requires the smallest computation time (see the confidence interval of r(0) - r(l) 

in Table 6.4). 

In conclusion, sample points inherited from the previous iteration decreases the 

similarity value in the next iteration but no more than 0.5% inheritance for the small data set 

and, 0.5-0.85% inheritance for the large data set are needed. Most of the computation time is 

minimized when the inheritance level is 0.5% and is stabilized by using inheritance. 

Computation time shows different patterns that depended on what algorithms are used, not on 

the size of the data set as already explained above. Rinott's sampling method shows similar 

results. 

6.2 Statistical Sampling 

As already discussed in the previous section, there are two shortcomings of the pure 

NP method: the probability of success in each iteration is not guaranteed, and there may be 

considerable waste involved in the allocation of sample points. These can be handled by 

combining pure NP with a statistical sampling method (Neison-Matejcik and Rinott's 

sampling). Figure 6.5, Figure 6.6, Figure 6.7, and Table 6.5 show the results of the large data 

set when the numbers of instances are 3, 30, 200. /v(P), /v(NM), and ^(NSR) are defined 

as the expected similarity value when pure NP, NP/NM, and NP/NSR algorithms are used. 

Combining algorithms with the NP method are definitely better than the pure algorithm in 

terms of similarity value (all the confidence interval does not contain 0 in Table 6.5). 



www.manaraa.com

114 

Table 6.3: Similarity Results of f-test with 95% Confidence Interval for the Small Data Set 

when the Neison-Matejcik Sampling Method is Used 

Algorithm instances S Z(n) Var(Z(n)) Confidence Interval 

N P/N M/K- means 

1(05%) 

Xi(0)-/Kl) 52.3 246.35 [20.8.83.8] 

N P/N M/K- means 

1(05%) w## [1.9,102.01 

N P/N M/K- means 

1(05%) 

s
 

1 $
 

-35.7 875.10 [-23.7.95.1] 

N P/N M/K- means 

1(05%) 

fl(. 2)-A(8) -58.4 700.70 [-111.6.-5.2] N P/N M/K- means 

82(28%) 

//(0)-//(l) 166.4 325.70 [130.1.202.7] 

N P/N M/K- means 

82(28%) 
; .y -3&2:;- 24730 [45,67.8] 

N P/N M/K- means 

82(28%) 
//(2)-/<(4) -20.3 360.80 [-58.4. 17.9] 

N P/N M/K- means 

82(28%) 

A (2)-A (8) 18.2 205.80 [-10.6.47.0) 

NPZNM/Gcnctic 

1(05%) 

: v : 1<M: 367.00 [1283,2053] 

NPZNM/Gcnctic 

1(05%) 
A(l) -Mi. 2) -9.8 41250 [-50.6.30.9] 

NPZNM/Gcnctic 

1(05%) 
A(D-A(4) -5.8 297.20 [-40.4. 28.8] 

NPZNM/Gcnctic 

1(05%) 

/i(l)-X<(8) -6.9 405.10 [-17.4.335] NPZNM/Gcnctic 

82(28%) 

f-> ' ' 13950 [171 », 2193] 

NPZNM/Gcnctic 

82(28%) 
ft( l)-A(2) 1.6 45.80 [-11.9. 15.3] 

NPZNM/Gcnctic 

82(28%) 
A(l)-A(4) -0.5 32.38 [-16.8.6.0] 

NPZNM/Gcnctic 

82(28%) 

ft{ 1) -a(8) 3.1 36.99 [-9.0. 15.3] 

NP/NM/Gcnctic/K-
mcans 

1(05%) 

' 79130 [0.7.113.81 

NP/NM/Gcnctic/K-
mcans 

1(05%) 
A(l)-A(2) 33.9 594.60 [-15.0.82.9] 

NP/NM/Gcnctic/K-
mcans 

1(05%) 1
 

i
 85.6 955.26 [235.147.7] 

NP/NM/Gcnctic/K-
mcans 

1(05%) 

M4)-A(8) -20.0 617.13 [-69.9.29.8] NP/NM/Gcnctic/K-
mcans 

82(28%) 

139t70 [161% 208.7] 
NP/NM/Gcnctic/K-

mcans 

82(28%) 

1
 

1 S
 

-11.2 110.60 [-325.9.9] 

NP/NM/Gcnctic/K-
mcans 

82(28%) 
A(l)-/<(4) 3.1 118.60 [-18.7.25.0] 

NP/NM/Gcnctic/K-
mcans 

82(28%) 

1
 

1 1
 

5.0 94.88 [-145.24.6] 



www.manaraa.com

115 

-os* 6«» - ta» -

l ( U U n 21 U H tt t  « u i i n s t u M u u  
Replications Replications 

NP/NM/K-means algorithm 

-0» OS» —-—15» • •o» # • 05» ess» —-— is» i 

i 

4 11 16 a 26 H M «t t t U 16 a 26 11 16 41 
Replications Replications 

NP/NM/Genetic algorithm 

-05» OâS» — 16» < •05» 0«5» • " 15» "I m I I» : 

i 

t 6 II 16 a 26 11 16 41 

Replications 

NP/NM/Genetic/K-means algorithm 

Figure 6.3: Similarity Value of Each Algorithm when the Numbers of Instances are 1 (Left), 

and 82 (Right) of the Small Data Set when the Neison-Matejcik Sampling Method is Used 
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Table 6.4: Computation Time Results of f-test with 95% Confidence Interval of Small Data 

when Neison-Matejcik Sampling Method is Used 

Algorithm Instances S Z(n) Var(Z(n)) Confidence Interval 

r(8) - r(4) 7328.2 1263366-50 [5070.1.9586J] 

1(0.5%) 
r(4)-r(2) 11634.0 907747.23 [9720.6. 13548.8] 

1(0.5%) 
r(2)-r(l) 4399.6 1034573,50 [2356.2.6443.1] 

NP/NM/k-Means IBS®! 
pËSgp 

HWii D678&4 2268M] 

r(8) - r(4) 6693J 495405.40 [5279.5.8107.5] 

82(28%) 
r(4) - r(2) 7397.9 325284.27 [6252.1. 8543.7] 

82(28%) 
r(2) - r(l) 2717.9 90731.90 [2IIZ7.3323.il 

ism SEE ; «nttii [14850.5.17712.0] 

r(8) - r(4) 4040.1 4122266.20 [-38.7.8119.1] 

1(05%) 
r(8) - r(2) 10929.6 2628330.20 [7672.6. 14186.6] 

1(05%) 
r(2) - r(l) 3427.4 2215261.90 [437.3.6417.6] 

NPZN MyGcnctic iiio$reii»3o : ' [675223.109759.5] 

r(8) - r(4) 2069.0 1015423.60 [44.6.4093.5] 

82(28%) 
r(4) - r(2) 2419.4 908391.05 [504.7.4334.2] 

82(28%) 
r(2) - r(l) 2648.6 659898.69 [1016.7.4280.6] 

ÛB#:' # 83748658.00 ' [74233J. 111003.9] 

r(8)-r(4) 1861.6 1857355.40 [-876.Z 4599.6] 

1(0.5%) 
r(8) - r(2) 3288.4 1582839JO [760.9.5816.0] 

1(0.5%) 
r(2)-r(l) 67X2 54202.65 [2045. 1139.9] 

NP/NM/Geneuc/k-
[33018J. 46089.0] 

Means 
r(8)-r(4) 636.4 1031686.10 [-1404.2. 2677.0] 

82(28%) 
r(8) - r(2) 4044.6 819583.70 [2225.8.5863J] 

82(28%) 
r(2)-r(l) 1388J 215079.08 [456.6.2320.0] 
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Figure 6.4: Computation Time of Each Algorithm when the Numbers of Instances are 1 

(Left), and 82 (Right) of the Small Data Set when the Neison-Matejcik Sampling Method is 

Used 
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However, the NP method required more computation time. Similar results are obtained from 

the small data set. 

It has been observed that combining NP algorithms are better than pure NP algorithm 

in terms of the similarity value. Next, comparisons between different sampling methods are 

observed. Figure 6.8, Figure 6.9, Figure 6.10, and Table 6.6 show the results of the similarity 

value for the large size data set when the numbers of instances are 30 and 200. /v(NM_30) 

and//(NSR_30) are defined as the expected similarity value and r(NM_30) and 

r(NSR_30) are defined as the expected computation time for the NP/NM and NP/NSR 

algorithms when 30 instances are used. /v(NM _200) and ^/(NSR_200) are defined as the 

expected similarity value and r(NM 200) and r(NSR_200) are defined as the expected 

computation time for the NP/NM and NP/NSR algorithms when 200 instances are used. 

Table 6.6 shows all the confidence intervals containing 0, which means there are no 

significant difference in similarity values between the Neison-Matejcik sampling and the 

Rinott's sampling method. Computation results show the same results (see the Figure 6.8, 

Figure 6.9, Figure 6.10, and Table 6.6). 
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Table 6.5: Similarity Results of /-test with 95% Confidence Interval for the Large Data Set 

Algorithm Instances S Z(n) Var(Z(n)) Confidence Interval 

3(0.5%) 
p(P)-p(NM) 597.42 2516.087 [496.6,698.1] 

3(0.5%) 
A(P)-MNSR) 627.84 1590.046 [547.7,707.9] 

K-means 
30(4.5%) 

Ai(P)-A/(NM) 54134 1942.268 [452.8,629.8] 
30(4.5%) 

A(P)-MNSR) 422.74 3008.832 [312.5.532.9] 

200(28%) 
p(P)-p(NM) 560.66 2756.138 [455.1,666.1] 

200(28%) 
A(P)-A(NSR) 488.68 2714.066 [384.0.593J] 

3(0.5%) 
A(P)-//(NM) 23438 2693.210 [130.7,339.2] 

3(0.5%) 
A(P)-MNSR) 530.56 1459.407 [453.8,6073] 

Genetic 
30(4.5%) 

A(P)-/<(NM) 582.96 1886.153 [495.7,670.2] 
30(4.5%) 

p(P)-XNSR) 578.88 2767.782 [473.1,684.5] 

200(28%) 
A(P)-A(NM) 523.44 1952.084 [434.6,612.2] 

200(28%) 
/i(P)-p(NSR) 518.04 2641.413 [414.7,621-2] 

3(0.5%) 
A(P)-A(NM) 788.06 8311.132 [604.9,971.2] 

3(0.5%) 
A(P)-A(NSR) 398.00 5370542 [250.7,545.2] 

Genetic/K-means 30(4.5%) 

1
 

1 1
 

30632 4335522 [174.0.438.6] 
Genetic/K-means 30(4.5%) 

p(P)-p(NSR) 620.40 4028.181 [492.8.747.9] 

200(28%) 
//(P)-//(NM) 558.46 3448.608 [440.4,676.4] 

200(28%) 
/i(P)-p(NSR) 1112.50 9195504 [919.8, 1305.1] 



www.manaraa.com

120 

wnau K NMAf I 

L. 

6 11 IS 21 26 31 36 41 4« 
Replications 

K-Weens » WP/MP/K-Hi 

63000 

4 11 It 21 2< 11 It 41 46 
Replicationi 

3(0.5%) Instances 

>/K3*/K-neene I 

I 
§1000 

agjMm 
Y 

« 11 16 21 56 11 36 41 46 
Replications 

30(4.5%) Instances 

UK-Keen* • » M»/m.'K»Weene 

î 63000 

1 6 It 16 21 26 II 36 41 46 
Replications 

« It 14 21 26 11 16 41 46 
Replications 

r*/K-*eene # M»/MMt/K-m#er# 

1 6 11 16 21 26 11 16 41 46 
Replications 

200(28%) Instances 

Figure 6.5: Similarity Value of the Pure K-means and Combined K-means with the NP for 

the Large Data Set 
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Table 6.6: Similarity Results of f-test with 95% Confidence Interval for the Large Data Set 

Algorithm Inheritances S Z(n) Var(Z(n)) Confidence Interval 

K-means 
0(0%) 

//(NM_30)-//(NSR_30) -13.44 4488 [-148.0. 121.1] 

K-means 
0(0%) 

//(NM _ 200)-//(NSR _ 200) -30.9 5850 [-184 J. 122.7] K-means 

20(3%) 
//(NM_30) -//(NSR _30) 173 785 [-38.9.73.6] 

K-means 

20(3%) 
A(NM_200) -//(NSR_200) 2.2 1142 [-65.6.70.11 

Genetic 
0(0%) 

//(NM_30)-//(NSR_30) -70.1 4091 [-198.6.583] 

Genetic 
0(0%) 

//(NM _200) -//(NSR _200) 34.5 4874 [-105.7. 174.8] Genetic 

20(3%) 
/z(NM _ 30) — //(NSR _30) 243 1012 [-39 J. 88.21 

Genetic 

20(3%) 
//( NM _ 200) - //( NSR _200) -12.6 889 [-72.5.47.2] 

Genetic/K-means 

0(0%) 
A(NM_30)-//(NSR _30) 93.2 3145 [-19.4. 205.91 

Genetic/K-means 

0(0%) 
//(NM _ 200) - //(NSR _200) 9.9 2809 [-95 J. 116.4] 

Genetic/K-means 

20(3%) 
//(NM_30)-//(NSR_30) 50.9 2327 [-46.0. 147.81 

Genetic/K-means 

20(3%) 
//(NM _200) -//(NSR _200) 5.9 1910 [-81.8.93.7] 

Table 6.7: Computation Time Results of f-test with 95% Confidence Interval for the Large 

Data Set 

Algorithm Inheritances S Z(n) Var(Z(n)) Confidence Interval 

K-means 
0(0%) 

r(NM _30) - r(NSR _30) 825.6 689577 [-2493.9.842.6] 

K-means 
0(0%) 

r( NM _ 200) - r( NSR _ 200) 4304.9 453621 [2951.8.5657.9] K-means 

20(3%) 
r(NM _30) - r(NSR _30) 73 3115 [-104.7. 119.5] 

K-means 

20(3%) 
r( NM _200) - r( NSR _200) 5402.0 31995 [5042.7.5761.4] 

Genetic 
0(0%) 

r(NM_30)-r(NSR_30) 6416.4 93000000 [-12943.0.25775.7] 

Genetic 
0(0%) 

r(NM_200) - r(NSR _200) 6134.8 49000000 [-7998.2. 20267.81 Genetic 

20(3%) 
r(NM_30)-r(NSR_30) -1368.7 3619518 [-5190.8.2453.4] 

Genetic 

20(3%) 
n NM _200) - rt NSR _200) -2689.4 4771738 [-7077.9. 1699.11 

Genetic/K-means 

0(0%) 
r(NM_30)-r(NSR_30) -7548.4 39000000 [-200044.0.4947.41 

Genetic/K-means 

0(0%) 
r(NM_200) - f(NSR _200) 75073 22000000 [-1911.2. 16925.9] 

Genetic/K-means 

20(3%) 
r(NM_30)-r(NSR_30) -24083 2582494 [-5636.8.820.1] 

Genetic/K-means 

20(3%) 
r(NM _200) - r(NSR _200) -1966.6 1600965 [-5753.4508,5] 
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Figure 6.8: Similarity Value of K-means when then Numbers of Instances are 30(Left) and 

200(right) for the Large Data Set 
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Figure 6.9: Similarity Value of Genetic when the Numbers of Instances are 30(Left) and 

200(Right) for the Large Data Set 
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Figure 6.10: Similarity Value of Genetic/K-means when the Numbers of Instances are 

30(Left) and 200(Right) for the Large Data Set 
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Figure 6.11: Computation Time of K-means when the Numbers of Instances are 30(Left) and 

200(Right) for the Large Data Set 
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Figure 6.12: Computation Time of Genetic when the Numbers of Instances are 30(Left) and 

200(Right) for the Large Data Set 
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Figure 6.13: Computation Time of Genetic/K-means when the Numbers of Instances are 

30(Left) and 200(Right) for the Large Data Set 
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6.3 Comparison with K-medoid methods 

In this section, comparison results between suggested algorithms and several 

algorithms such as PAM (Partitioning Around Medoids), CLARA (Clustering LARge 

Applications), CLARANS (Clustering Large Applications with RANdomized Search) that 

employing K-medoid method are showed. PAM was developed by Kaufman and Rosseeuw 

(Kaufman and Rosseeuw, 1990). To find k clusters, PAM's approach is to determine a 

representative object for each cluster. Instead of finding representative objects for the entire 

set like in PAM, CLARA draws a sample of the data set, applies PAM on the sample, and 

finds the medoids of the sample. Like CLARA, CLARANS does not check every neighbor of 

a node. But unlike CLARA, it does not restrict its search to particular subset. In other words, 

while CLARA draws a sample of nodes at the beginning of a search, CLARANS draws a 

sample of neighbors in each step of search. Detail algorithms can be found in Ng, R. et al. 

(1994). 

Table 6.8 and Table 6.9 show the results of mean and variance of similarity value and 

computation time of large data set. As expected PAM gives the best similarity value but 

requires too much computation time. CLARA requires the smallest computation time but the 

similarity value is too high. Unlike these, the suggested algorithms and CLARANS give 

relatively small similarity value and computation time. There is a trade-off between 

similarity value and computation time in choosing an algorithm. However, when inheritance 

is used, the results are different. The suggested algorithms are better than PAM, CLARA, and 

CLARANS in terms of both similarity value and computation time. 
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Table 6.8: Comparison Results of Large Data Set when Inheritance is Not Used 

Algorithm Similarity Value Computation Time 

NP/NM/K- means 4259.0 46 394777 6668 

NP/NM/Genetic 4203.7 40 404534 23118 

NP/NM/Genetic/K-means 4444.2 39 231200 10487 

PAM 3165.6 0.48 10255267 151560 

CLARA 5026.3 54 174861 4682 

CLARANS 3619.7 29 524103 15 

Table 6.9: Comparison Results of Large Data Set when Inheritance is Used 

Algorithm Similarity Value Computation Time 

NP/NM/K-means 3292.1 16 373743 2692 

NP/NM/Genetic 3388.3 17 186965 6782 

NP/NM/Genetic/K-means 3811.9 33 101676 6001 

PAM 3165.6 0.48 10255267 151560 

CLARA 5026.3 54 174861 4682 

CLARANS 3619.7 29 524103 15 

Table 6.10 and Table 6.11 show the results of mean and variance of similarity value 

and computation time of small data set. As expected, PAM and CLARA give the worst 

computation time and similarity value each. The results are almost same as large data set. 

Unlike the large data set, in small data set, the suggested algorithms give always better 

computation time than PAM, CLARA, and CLARANS whether the inheritance is used or 

not. Furthermore, there is not much difference in similarity value. In conclusion, the 

suggested algorithms are always much more efficient than PAM, CLARA, and CLARANS in 
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terms of similarity value and computation time. Even if the data size is increased, the 

suggested algorithms with inheritance are better than k-medoids algorithms in similarity 

value and computation time. 

Table 6.10: Comparison Results of Small Data Set when Inheritance is Not Used 

Algorithm Similarity Value Computation Time 

NP/NM/K-means 1302.3 13 84115 3166 

NP/NM/Genetic 1317.1 12 128158 8684 

NP/NM/Genetic/K-means 1267.8 11 72739 4528 

PAM 977.8 2 1924105 52992 

CLARA 1971.3 21 178816 4880 

CLARANS 1151.3 9 213114 15 

Table 6.11: Comparison Results of Small Data Set when Inheritance is Used 

Algorithm Similarity Value Computation Time 

NP/NM/K-means 1128.0 16 69111 960 

NP/NM/Genetic 1160.3 5 31606 753 

NP/NM/Genetic/K-means 1125.6 8 20025 467 

PAM 977.8 2 1924105 52992 

CLARA 1971.3 21 178816 4880 

CLARANS 1151.3 9 213114 15 



www.manaraa.com

133 

6.4 Conclusions 

In this chapter, two things have been demonstrated: first, by varying the amount of 

inheritance the most effective amount of inheritance is determined for the next iteration; 

second, by combining pure NP with statistical sampling, shortcomings of the pure NP 

method are overcome. 

From the numerical results, 0.5% is the best level for the small data set and 

0.5-0.85% is ideal for the large data set when inheriting samples in the next iteration. Most 

of computation time is minimized when the inheritance level is 0.5% and is stabilized by 

using inheritance. Computation time showed different patterns that depend on what 

algorithms are used rather than the size of the data set. In addition, by combining pure NP 

with statistical sampling method, the similarity value could be improved over the pure NP, 

but this also required more computation time. Also, there is no difference in similarity value 

and computation time when using either Neison-Matejcik or Rinott's sampling method. 

Finally, the comparison results between suggested algorithms and PAM, CLARA, and 

CLARANS shows suggested algorithms always better in terms of solution quality and 

computation time when the data size is small whether the inheritance is used or not. Even if 

the data size is increased, the suggested algorithms are better than k-medoids algorithms in 

similarity value and computation time when inheritance is used. However, without 

inheritance, there is a trade-off between solution quality and computation time for choosing 

algorithm. 
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Chapter 7 

Conclusions and Future Research 

In this thesis, a new optimization technique under uncertainty is presented that 

extends the pure Nested Partition (NP) algorithm. This method is called Nested Partition with 

inheritance. Furthermore, statistical selection methods and random search methods are 

introduced to overcome certain shortcomings of the pure NP algorithm. For the numerical 

evaluation, both the Monte Carlo problem and queuing problem are used to test the proposed 

methods. Finally, all suggested algorithms are applied to a data mining problem with noisy 

performance estimates. 

7.1 NP with Inheritance 

In the original NP, independent sampling is performed in each iteration such that 

knowledge that gained by each iteration is partially lost. The basic idea of this new 

algorithm, called NP with inheritance, is to retain certain good solutions by inheriting these 

solutions in the next iteration. Therefore, better solutions are formed in the next iteration than 

the previous iteration. 

In addition to developing NP with inheritance (both with and without statistical 

selection), numerical results are presented to determine its effectiveness and suggest 

guidelines for the amount of inheritance. These results show that these algorithms, when 

employing inheritance, give a higher quality solution than without whether a statistical 

selection method used or not. Furthermore, the improvement increases with the number of 

the GA iterations used, such that, when more effort is put into local search, saving those 
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solutions is more critical. By applying this approach to a specific problem, namely data 

clustering, some empirical experience regarding the best amount of inheritance or number of 

points to be carried over to the next iteration has been determined. For the data clustering 

problem, two different problem sizes are tested. From the numerical results, 0.5% of sample 

points appears to be the best amount for the smaller sized problem and 0.5-0.85% for the 

larger sized problem for inheriting samples to the next iteration. Also, most of computation 

effort is minimized when the inheritance amount is 0.5% and is stabilized by using 

inheritance. These results indicate that while inheritance is beneficial, the level of 

inheritance, that is the number of points carried to the next iteration, should be low. 

7.2 NP with Statistical Selection Method and Random Search Method 

Even though the pure NP method guarantees the convergence to the optimal solution, 

its efficiency and convergence properties can still be improved. To address these, two 

extensions to the pure NP method are suggested: the statistical selection method and random 

search method. First, to have more intelligent sampling, four statistical selection methods are 

implemented, which include Nelson Matejcik's procedure, Rinott's procedure, and Dudewicz 

and Dalai's procedure, as well as subset selection. Second, Genetic Algorithms (GAs) are 

used to speed convergence and to overcome the difficulty in the backtracking stage of the NP 

algorithm. For the numerical evaluation, both the Monte Carlo problem and queuing problem 

are used. 

Chapter 3 deals mainly with combining statistical methods with NP. The Nelson 

Matejcik's procedure is suggested for independent sampling. On the other hand, Rinott's 

procedure and Dudewicz and Dalal's procedure are suggested for dependent sampling. 
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Theoretically, employing dependent sampling using Common Random Numbers (CRNs) 

needs less computation than independent sampling. Therefore, it is expected that dependent 

sampling will save computation time. As expected, the numerical results indicate that the 

Nelson Matejcik's procedure needs less computational effort. With a limited computation 

budget, the solution quality degenerates very quickly when the desired probability of the 

correct solution ( P' ) is set too high. 

In addition, when using the subset selection procedure, inferior regions can be deleted 

in advance. This procedure is combined with an independent sampling method because of the 

independence assumption. Numerical results show that when using a subset selection better 

results are obtained. 

The statistical selection method shows several things. First, which algorithm is better 

depends on the problem that has to be solved. For example, Nelson Matejcik's procedure 

performs well for the Monte Carlo test problem. On the other hand, the Rinott's procedure 

and Dudewicz and Dalai's procedure perform better for the queuing test problem. Second, 

two-stage sampling can save computation effort over pure NP. Finally, low P' values are 

advisable because the amount of computational effort increases exponentially in P*. 

The pure NP is also combined with the statistical selection method, Genetic 

Algorithms (GA) and inheritance. There are two noteworthy results: First, the statistical 

selection method has better results than no statistical selection method whether inheritance is 

used or not. Second, the difference of the probability of correct selection between with and 

without inheritance is smaller with than without statistical selection. 

In addition to the development of new optimization methodology, an application to 

data clustering is presented. 
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7.3 Application to Data Clustering 

In data mining, it is necessary to effectively deal with the scalability problem because 

of the extensive amount of data involved. To effectively deal with large amounts of data, 

random sampling may be unavoidable instead of learning from every instance. Therefore, 

when using clustering for data mining, two things are critically important: scalability and 

high dimensionality. Fortunately, the NP methodology can handle both. In addition, 

combining the pure NP with the methods which are previously introduced, better results are 

obtained in data clustering. In particular, the well-known clustering algorithm, K-means, is 

incorporated with statistical selection, random search, and inheritance. For the numerical 

evaluation, two different sizes of cancer data are used. 

The numerical results show that with the combined NP method, the computation 

effort can be greatly reduced by using a sample of instances instead of all instances in the 

case of the large problem. When using half of the instances instead of all instances, the 

computation effort is decreased without affecting solution quality. On the other hand, with 

too few instances solution quality becomes significantly worse at the same time as 

computation effort goes up. When sampling between 4.5-50% of instances, there is a trade­

off between solution quality and computation effort. Finally, the combined algorithm with It-

means needs relatively less computation effort than the other algorithms, especially with the 

larger sized problem. 

Chapter 6 focuses on the evaluation of the new methodology, Nested Partitions 

method with inheritance, for the data clustering problem. In this chapter, several points are 

made. First, the best amount of inheritance for the next iteration is suggested. Second, the 

shortcoming of the pure NP is overcome by combining pure NP with statistical sampling. 
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Combining pure NP with statistical sampling gives better solutions than pure NP but needs 

more computation effort. Moreover, the pattern of computation effort depends on the 

algorithms used, not the problem size. And there is no difference in solution quality and 

computation time between the two different sampling methods: Nelson-Matejcik and Rinott's 

sampling. Finally, the comparison results between suggested algorithms and PAM, CLARA, 

and CLARANS shows suggested algorithms always better, especially when the data size is 

small. 

7.4 Future Research 

For future research several things can be considered. In this thesis, only the new 

algorithm has been introduced and demonstrated using numerical results. By inheriting 

sample points from the previous iteration to the next iteration, the Markovian property, which 

is used to prove the convergence for the pure NP methodology, is not applicable anymore. 

Therefore, rigorous convergence analysis of the new methodology still remains. Also, further 

testing of different kinds of data should be performed. Finally, instead of GA, other random 

search methods can be considered with combining with NP. 
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APPENDIX 

Algorithm NP/NM/K-means 

Step I. Initialization 

Set it =0 and <r(k)=Q. Specify the value of z° j  = 1,2 Ma a )  

Specify the constants £,a,n t  and nQ .  Let g = T™a_ l ) ( r h_ l ) 0 S , an equicoordinate 

critical point of the equicorrelated multivariate central t  -distribution; the constant can 

be found in Hochberg and Tamhane (1987), Appendix 3, Table 4; Bechhofer et al. 

(1995); or by using the FORTRAN program AS251 of Dunnet (1989). 

Step 2. Partitioning 

If d(a(k))*d',  that is, <7(k) * partition the fittest region, <r(k), into A/0(t) 

sub-regions <r x(k), . . . ,<rM a^{k).  If d(cr(k)) *0, that is, a(fc)*0, aggregate the 

surrounding region Q\a(k) into one region <rMe t | (k).  

Stage I Sampling 

Step 3. First-Stage Sampling 

Step 3-1. Set / = 0. 

Step 3-2. K-Means Algorithm 

Step3-2-1. h = I. 

Step 3-2-2. Randomly Assign Instances to the Clusters 

Use random sampling to obtain N instances and assign to the 

centers for each of the regions (&), j = 1,2,..., A/„(t) +1. 
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Step 3-2-3. Calculate the Squared Error Criterion Function 

Calculate squared error criterion function 

A NC 

Lh(<Tj(k)) =2 5} *~ z> ' '  1  =  1  J = l*2 Afff(i) + 1. 
i=l re/J 

if M<7,(*)) < LA_,(<7y(*)) then X t j(k) = Lh«Tj(k)) 

Step 3-2-4. If h = nk continue to Step 3-3. Otherwise let h = h + 1 and 

go back to Step 3-2-2. 

Step 3-2-4. Change the Center of each Subregion 

Change the centers of the value of the features > d(<7(k)) for 

each cluster of each subregion and back to Step 3-2-2. 

Step 3-3. If t  = n0  continue to Step 4. Otherwise let u=u +1 and go back to Step 

3-2-2. 

Stage II Sampling 

Step 4. Estimating Mean and Variance of First-Stage Sampling 

Compute the approximate sample variance of the difference of the sample means 

(t-lK/1,-1) 

Where X. ^XJk, X.j^Xjn,, and X =2^, 

Step 5. Computing Total Sample Size for Second-Stage Sampling 

Compute the total sample size for all j 
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Compute the total sample size N(k) = max "o » (f) 
for y = l,2, 

Step 6. Second-Stage Sampling 

Obtain N{k)-n^ more sample estimates of the system performance for all y as 

in Step 3 above. 

Step 7. Estimating Mean of Second-Stage Sampling 

Let the overall sample mean be the promising index for all ye / , 

I(<T J(k)) = X J(k) = ̂ N ( k ' )  

Step 8. Calculating the Promising Index 

Calculate the index of the region with the smallest squared error criterion function 

(most promising region); 

A A 

jk 6 arg min I (ay ) for all ye / . 

If more than one region is equally promising, the tie can be broken arbitrarily. If this 

index corresponds to a region that is a sub-region of <r(k), then let this sub-region be 

the most promising region of next iteration, that is, o(k 4-1) = <Tj(k),  j  < M f f ( i )  

Otherwise, if the index corresponds to the surrounding region, backtrack to the 

region, s(a(k)),  of the current most promising region. That is,  let  a(k +1) = s(a(k)).  

Step 9. Checking the Stopping Rule 

If <5{k +1) e Z0 stop and <5opt = G(k +1) else k = k +1 and go back to Step 2. 
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Algorithm NP/NM/Genetic 

Step 1. Initialization 

Set k= 0 and a(k) =0. Specify the value of z° j  = 1,2,... ,Ma ( k ) . 

Specify the constants e, a, and n0. Let g = T^(k_l)ino_l)QS, an equicoordinate 

critical point of the equicorrelated multivariate central t -distribution; the constant can 

be found in Hochberg and Tamhane (1987), Appendix 3, Table 4; Bechhofer et al. 

(1995); or by using the FORTRAN program AS251 of Dunnet (1989). 

Step 2. Partitioning 

If d(<T(k))*d',  that is, <r(Jfc)*£0, partition the fittest region, <r(fc), into Ma ( k )  

sub-regions <Tx(Jk),...,<TMai (k). If d(G(k)) #0, that is, G(k)*&, aggregate the 

surrounding region 0\a(Jfc) into one region <rM  <  |  (k).  

Step 3. Initial Population 

If k= 0 and d(<r(k))*d',  use random sampling to obtain an initial center 

population N strings from each of the regions <7y (k), j = 1,2,..., Maik) +1, 

POP,' = [z/*, z/2, — , zfN ], j = 1,2,... ,Malk) +1 

else use the population INHt_, =[zyl, z'2,..., zjN], j = jk as the initial population. 

Part of the lacks should be fulfilled using uniform sampling. 

Stage I Sampling 

Step 4. First-Stage Sampling 

Step 4-1. Set A = 1. 
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Step 4-2. GA Search 

Apply the GA to each initial population POP/ individually, obtaining 

a final population for each region <7y (k), j = 1,2,..., Malk) +1 

POP* =[z£, z? zf], y = 1,2 Ma(k) +1. 

Step 4-3. Calculate the Squared Error Criterion Function (Overall Fitness) 

Randomly assign instances to the best of final population to calculate 

squared error criterion function 

£ ( * , ( * ) )  = £  2 '  =  1  N e ,  y  =  1 , 2  M f f ( t )  +  1 .  
i=l xel' 

If Lh(<Tj(k)) < Lh_ l«j J(k)) then X t J(k) = L^cr^k)) 

Step 4-4. If h = nQ continue to Step 5.Otherwise let h = h + 1 and go back to 

Step 4-2. 

Stage Q Sampling 

Step 5. Estimating Mean and Variance of First-Stage Sampling 

See Step 4 in Algorithm NP/NM/K-means 

Step 6. Computing Total Sample Size for Second-Stage Sampling 

See Step 5 in Algorithm NP/NM/K-means 

Step 7. Second-Stage Sampling 

Obtain Nj(k)-n0  more sample estimates of the system performance for all y as 

in Step 4 above. 

Step 8. Estimating Mean of Second-Stage Sampling 
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See Step 7 in Algorithm NP/NM/K-means 

Step 9. Calculating the Promising Index 

See Step 8 in Algorithm NP/NM/K-means 

SteplQ.Checking the Stopping Rule 

See Step 9 in Algorithm NP/NM/K-means 



www.manaraa.com

145 

Algorithm NP/NM/K-means/Genetic 

Step I. Initialization 

Set k = Q and a(k)=Q. Specify the value of z° j  = 1,2,... ,Ma l k )  

Specify the constants e, a,nk and n0. Let g = Tk"}a_l){no_l) Q5, an equicoordinate 

critical point of the equicorrelated multivariate central t -distribution; the constant can 

be found in Hochberg and Tamhane (1987), Appendix 3, Table 4; Bechhofer et al, 

(1995); or by using the FORTRAN program AS251 of Dunnet (1989). 

Step 2. Partitioning 

See Step 4 in Algorithm NP/NM/Genetic 

Step 3. Initial Population 

See Step 4 in Algorithm NP/NM/Genetic 

Step 4. GA Search 

Apply the GA to each initial population POP/ individually, obtaining a final 

population for each region <ry (&), j = 1,2, ...,Ma(k) +1 

POP/ = [z Jp ,  z J
F \  ..., zf ], y = 1,2 Ma ( k )  +1 

Step 5. First-Stage Sampling 

Step 5-1. Set f =0. 

Step 5-2. K-means Algorithm 

See Step 3-2 in Algorithm NP/NM/K-means 

Step 5-3. See Step 3-3 in Algorithm NP/NM/K-means 

Stage II Sampling 

Step 6. Estimating Mean and Variance of First-Stage Sampling 
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See Step 4 in Algorithm NP/NM/K-means 

Step 7. Computing Total Sample Size for Second-Stage Sampling 

See Step 5 in Algorithm NP/NM/K-means 

Step 8. Second-Stage Sampling 

See Step 6 in Algorithm NP/NM/K-means 

Step 9. Estimating Mean of Second-Stage Sampling 

See Step 7 in Algorithm NP/NM/K-means 

Step 10. Calculating the Promising Index 

See Step 8 in Algorithm NP/NM/K-means 

Step 11. Checking the Stopping Rule 

See Step 9 in Algorithm NP/NM/K-means 



www.manaraa.com

147 

Algorithm NP/NSR/K-means 

Step 1. Initialization 

Set k =0 and <r(k)=Q. Specify the value of z° j  = 1,2,... ,Ma ( k )  

Specify the overall desired probability P* of correct selection and indifference zone 

£, termination parameter of K-means algorithm nk, the common initial sample size 

n0> 2, the number of sub-regions M. Determine h2  for Rinott's integral. h2  are 

constants which are determined by n0, the minimum probability P* of correct 

selection, and M (See the tables in Bechhofer et al., 1995). 

Step 2. Partitioning 

See Step 2 in Algorithm NP/NM/K-means 

Stage I Sampling 

Step 3. First-Stage Sampling 

See Step 3 in Algorithm NP/NM/K-means 

Stage II Sampling 

Step 4. Estimating Mean and Variance of First-Stage Sampling 

Calculate first-stage sample means and variances 

«0 r=l 

and 

f jLX t ik)-X"\k)f  
C- _ _£=l 

I 

for y=1,2,... ,M +1. 
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Step 5. Computing Total Sample Size for Second-Stage Sampling 

Compute the total sample size for all ye / 

n0+l, 

Ï
"
 1 

e 

where e is the indifference zone and is a constant determined by n0 and the 

minimum probability P' of correct selection. 

Step 6. Second-Stage Sampling 

See Step 6 in Algorithm NP/NM/K-means 

Step 7. Estimating Mean of Second-Stage Sampling 

See Step 7 in Algorithm NP/NM/K-means 

Step 8. Calculating the Promising Index 

See Step 8 in Algorithm NP/NM/K-means 

Step 9. Checking the Stopping Rule 

See Step 9 in Algorithm NP/NM/K-means 
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